[Objective] This study was to provide basis for the scientific management of land use in Haihe River Basin (HRB) through the quantitative exploration of the land use conversion, changes of intensity and spatial dist...[Objective] This study was to provide basis for the scientific management of land use in Haihe River Basin (HRB) through the quantitative exploration of the land use conversion, changes of intensity and spatial distribution in this region. [Method] With the support of remote sensing technology and geographic information technology, the land use maps of the study area in 40 years (1970-2010) were in- terpreted and plotted. Four kinds of tupu, namely, land use change tupu, process tupu, arising tupu and evolution mode tupu were built through the spatial overlay of the land use maps to analyze the change rules of land use patterns. [Result] The conversion of arable land to construction land was the main characteristics of land use changes in HRB for the 40 years; the area of non-stable region accounted for 35% of the total, indicating that the land use changed remarkably, thus, it was nec- essary to strengthen the scientific land management in HRB; the new conversions to all land use patterns were all the lowest in 1980-1990, indicating that land use changed slowly during this period. [Conclusion] The results indicate that, compared with conventional transfer matrix method, geo-information tupu has obvious advantage in analyzing land use changes that it can demonstrate the spatial distribution of interest region, display the multi-dimensional spatial information.展开更多
This paper takes Zhexi hydraulic region in Taihu Basin as a study area. On the basis of hydraulic analysis function of Arcgis8.3, the drainages were delineated by selecting the monitoring points and discharge stations...This paper takes Zhexi hydraulic region in Taihu Basin as a study area. On the basis of hydraulic analysis function of Arcgis8.3, the drainages were delineated by selecting the monitoring points and discharge stations as outlets. The landuse map were finished by denoting the TM/ETM image. The precipitation map was finished by spatial interpolation according to the rainfall monitoring records. Overlaying the drainage boundary, landuse map and precipitation map, the rainfall, different landuse type area, and runoff pollution concentration and runoff were calculated. Based on these data in different sub-watersheds, by Origin7.0 regression tool, an equation is established to predict runoff using the relationships between runoff, precipitation depth and land use patterns in each of the sub-watersheds. Selecting the sub-watershed which is mainly composed of forest landuse type, the mean runoff concentration (MRC) from sub-watershed has been estimated. The mean runoff concentration of farmland has been estimated by the same methods after the contribution of forest landuse type was removed. The results are: for the forest landuse type, the mean runoff concentrations of COD, BOD, Total N and Total P are 2.95 mg/l, 1.080 mg/l, 0.715 mg/l, and 0.039 mg/l, respectively; for the farmland, the mean runoff concentrations of COD, BOD, Total N and Total P are 5.721 mg/l, 3.097 mg/l, 2.092 mg/l, and 0.166 mg/l, respectively. By using these results, the agriculture non-point pollution loads have been assessed. The loads of COD, BOD, Total N and Total P in Zhexi region are 14,631.69 t/a, 6401.93 t/a, 4281.753 t/a and 287.67 t/a, respectively.展开更多
This paper describes a GIS-based sp atial analysis method that combines qualitative analysis and quantita-tive analysis to characterize land-use patterns and predict the trend of future land-use changes in Haizhu Di s...This paper describes a GIS-based sp atial analysis method that combines qualitative analysis and quantita-tive analysis to characterize land-use patterns and predict the trend of future land-use changes in Haizhu Di strict of Guangzhou City,China.Spatial tech nique is introduced to manage land-u se data and derive information of lan d-use changes.Through the case study for t he selected area,it is demonstrated that the method and technique introd uced in the paper can be effectively utilized fo r the analysis of urban land-use chan ges.Based upon this analysis,the paper also pro-vides discussions and recommendati on on urban land-use planning,urban planning and land management.Both l and-use maps of Haizhu District of Guangzhou in 1995and 1997and the remote sensin g images of 1999are utilized in the cu r-rent research.It is convenient to ge t various statistic data and to combi ne attribute data with spatial data s o as to analyze land-use changes in a geographic con text,which is especially suitable f or the need of urban construction dep artment,ur-ban management department and urban planning department.展开更多
In China, accelerating industrialization and urbanization followinghigh-speed economic development and population increases have greatly impacted land use/coverchanges, making it imperative to obtain accurate and up t...In China, accelerating industrialization and urbanization followinghigh-speed economic development and population increases have greatly impacted land use/coverchanges, making it imperative to obtain accurate and up to date iufbimation on changes soas toevaluate their environmental effects. The major purpose of this study was to develop a new method tofuse lower spatial resolution multispectral satellite images with higher spatial resolutionpanchromatic ones to assist in land use/cover mapping.An algorithm of a new fusion method known asedge enhancement intensity modulation (EEIM) was proposed to merge two optical image data sets ofdifferent spectral ranges. The results showed that the EEIM image was quite similar in color tolower resolution multispectral images, and the fused product was better able to preserve spectralinformation. Thus, compared to conventional approaches, the spectral distortion of the fused imageswas markedly reduced. Therefore, the EEIM fusion method could be utilized to fuse remote sensingdata from the same or different sensors, including TM images and SPOT5 panchromatic images,providing high quality land use/cover images.展开更多
Due to inappropriate planning and management, accelerated urban growth and tremendous loss in land, especially cropland, have become a great challenge for sustainable urban development in China, especially in develope...Due to inappropriate planning and management, accelerated urban growth and tremendous loss in land, especially cropland, have become a great challenge for sustainable urban development in China, especially in developed urban area in the coastal regions; therefore, there is an urgent need to effectively detect and monitor the land use changes and provide accurate and timely information for planning and management. In this study a method combining principal component analysis (PCA) of multisensor satellite images from SPOT (systeme pour l'observation de la terre or earth observation satellite)-5 multispectral (XS) and Landsat-7 enhanced thematic mapper (ETM) panchromatic (PAN) data, and supervised classification was used to detect and analyze the dynamics of land use changes in the city proper of Hangzhou. The overall accuracy of the land use change detection was 90.67% and Kappa index was 0.89. The results indicated that there was a considerable land use change (10.03% of the total area) in the study area from 2001 to 2003, with three major types of land use conversions: from cropland into built-up land, construction site, and water area (fish pond). Changes from orchard land into built-up land were also detected. The method described in this study is feasible and useful for detecting rapid land use change in the urban area.展开更多
This investigation is an analysis of the influence of landform instability on the distribution of land-use dynamics in a hydrographical basin, located in the Mexican Volcanic Belt mountain range (central Mexico), curr...This investigation is an analysis of the influence of landform instability on the distribution of land-use dynamics in a hydrographical basin, located in the Mexican Volcanic Belt mountain range (central Mexico), currently affected by substantial changes in land use and deforestation. A landform map was produced, in addition to seven attribute maps - altimetry, drainage density, slope, relief energy, potential erosion, geology and tectonics - which were considered as factors for determining landform instability through Multi-criteria Evaluation Analysis. Likewise, the direction and rhythm of land-use dynamics were analyzed in four dates - between 1976 and 2000 - and cross tabulations were made between them, in order to analyze the trends and processes of land-use dynamics. Afterwards, the databases obtained were cross tabulated with the landform variables to derive areas, percentages and correlation indices. In the study area, high-instability landforms are associated with most ancient volcanic and sedimentary landforms, where high altitude, drainage density, slope and potential to develop gravitational and fluvial processes are the major factors favouring a land-use pattern, dominated by the conservation of extensive forest land, abandonment of human land use and regeneration of disturbed areas. In contrast, low-instability landforms correspond to alluvial plains and lava hills covered by pyroclasts, where low potential erosion to develop fluvial processes, added to water and soil availability and accessibility, have favoured a land-use pattern dominated by the expansion of agroforestry plantations and human settlements, showing a marked trend towards either intensification or permanence of the current land use and with little abandonment and regeneration.展开更多
This study aims to figure out satellite imaging mechanisms for submerged sand ridges in the shallow water region in the case of the flow parallel to the topography corrugation.Solving the disturbance governing equatio...This study aims to figure out satellite imaging mechanisms for submerged sand ridges in the shallow water region in the case of the flow parallel to the topography corrugation.Solving the disturbance governing equations of the shear-flow yields the analytical solutions of the secondary circulation.The solutions indicate that a flow with a parabolic horizontal velocity shear and a sinusoidal vertical velocity shear will induce a pair of vortexes with opposite signs distributed symmetrically on the two sides of central line of a rectangular canal.In the case of the presence of surface Ekman layer with the direction of Ekman current opposite to(coincident with) the mean flow,the two vortexes converge(diverge) at the central line of canal in the upper layer and form a surface current convergent(divergent) zone along the central line of the canal.In the case of the absence of surface Ekman layer,there is no convergent(divergent) zone formed over the sea surface.The theoretical results are applied to interpretations of three convergent cases,one divergent case and statistics of 27 cases of satellite observations in the submerged sand ridge region of the Liaodong Shoal in the Bohai Sea.We found that the long,finger-like,bright patterns on SAR images are corresponding to the locations of the canals(or tidal channels) formed by two adjacent sand ridges rather than the sand ridges themselves.展开更多
The cold-island effect of urban wetlands has received increasing attention in recent years due to its important role in the alleviation of urban heat islands.Hangzhou,a representative rapidly urbanizing city with rich...The cold-island effect of urban wetlands has received increasing attention in recent years due to its important role in the alleviation of urban heat islands.Hangzhou,a representative rapidly urbanizing city with rich wetlands in China,was selected as a case study for researching the changes that the urban wetlands have undergone and their impact on the urban thermal environment.Land surface temperature(LST) was acquired from the thermal infrared data of Landsat 5 Thematic Mapper(TM) images in 1990,1995,2000,2006,and 2010,using the single-channel method.The results are as follows:1) considering the changes in land use,the urban wetlands located to the west of Hangzhou have decreased significantly during 1990–2010 because of rapid urbanization.In the Xixi Wetland,the change in land use was relatively small and most of the water body and vegetation were preserved.However,to the east of the Xixi Wetland,large areas of water body and vegetation have been replaced by built-up land as a result of the urbanization process;2) considering the change in LST,it was found from land surface temperature retrieval that the changing spatial pattern of the thermal field was highly correlated with land use changes.Low temperature regions of the eastern Xixi Wetland were gradually eroded by high temperature regions,and the centroid of the heat island in East Xixi was found to be constantly shifting westward.In addition,the difference in LST between the Xixi Wetland and East Xixi has increased;3) considering the impact factors for this area,land use structure and patch shape were found to have a significant impact on LST,shown by the results of multiple linear stepwise regressions.Increasing the size of the wetlands in urban planning is considered to be the most effective measure in alleviating the urban heat island effect.Moreover,reducing the spatial complexity of landscape patches also contributes to the alleviation of the urban heat island effect.展开更多
The DInSAR technique is used for monitoring the desert height changes to study sandstorms. Hunshandake Sandy Land, as the test area, is one of the main sources of sandstorms in Beijing. In order to study the sandstorm...The DInSAR technique is used for monitoring the desert height changes to study sandstorms. Hunshandake Sandy Land, as the test area, is one of the main sources of sandstorms in Beijing. In order to study the sandstorm source and its impact, a pair of EnviSat ASAR images of Oct. 11, 2005, and Oct. 26, 2004, is processed on the basis of analysis of six ERS-2 and EnviSat radar images. After the image configuration, flat earth effect correction, data filtering, phase unwrapping, and geo-coding, a deformation model over Hunshandake desert is built. According to the results, the height decreased in most areas and increased in a few areas, which basically coincides with the strong sandstorm appearing in Beijing in the Spring of 2005. The results show DInSAR has an important role in monitoring of desert surface deformation.展开更多
GIS- or CAD-based technology has been widely used for cartographic maps in coal mines, but structural gaps between such maps make it difficult to provide an integrated map service, for any specific purpose, at higher ...GIS- or CAD-based technology has been widely used for cartographic maps in coal mines, but structural gaps between such maps make it difficult to provide an integrated map service, for any specific purpose, at higher levels. There is no uniform platform that can be used to manage all involved maps. The main reason for this is that datasets are submitted by individual coal mines using their individual, diverse software. No consistent model is used within the software for data abstraction and symbolization. This paper first reviews all the essential specifications concerning OGC (Open Geospatial Consortium) interoperability. Then an OGC standard-oriented architecture is proposed to provide distributed coal mine map services. Within this new architecture the management of spatial data archives, and the integration of coal mine maps, are achieved through the interfaces of geospatial services. Finally an open source geospatial approach is suggested to implement the proposed scheme. A case study of the Huaibei Coal Group is used to demonstrate the proposal.展开更多
Nowadays, remote sensing imagery, especially with its high spatialresolution, has become an indispensable tool to provide timely up-gradation of urban land use andland cover information, which is a prerequisite for pr...Nowadays, remote sensing imagery, especially with its high spatialresolution, has become an indispensable tool to provide timely up-gradation of urban land use andland cover information, which is a prerequisite for proper urban planning and management. Thepossible method described in the present paper to obtain urban land use types is based on theprinciple that land use can be derived from the land cover existing in a neighborhood. Here, movingwindow is used to represent the spatial pattern of land cover within a neighborhood and seven windowsizes (61mx61m, 68mx68m, 75mx75m, 87mx87m, 99mx99m, 110mx110m and 121mxl21m) are applied todetermining the most proper window size. Then, the unsupervised method of ISODATA is employed toclassify the layered land cover density maps obtained by the moving window. The results of accuracyevaluation show that the window size of 99mx99m is proper to infer urban land use categories and theproposed method has produced a land use map with a total accuracy of 85%.展开更多
基金Supported by the Key Technology R&D Program of Hebei Province (10277105D)the Funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering(KSCX-EW-J-5)~~
文摘[Objective] This study was to provide basis for the scientific management of land use in Haihe River Basin (HRB) through the quantitative exploration of the land use conversion, changes of intensity and spatial distribution in this region. [Method] With the support of remote sensing technology and geographic information technology, the land use maps of the study area in 40 years (1970-2010) were in- terpreted and plotted. Four kinds of tupu, namely, land use change tupu, process tupu, arising tupu and evolution mode tupu were built through the spatial overlay of the land use maps to analyze the change rules of land use patterns. [Result] The conversion of arable land to construction land was the main characteristics of land use changes in HRB for the 40 years; the area of non-stable region accounted for 35% of the total, indicating that the land use changed remarkably, thus, it was nec- essary to strengthen the scientific land management in HRB; the new conversions to all land use patterns were all the lowest in 1980-1990, indicating that land use changed slowly during this period. [Conclusion] The results indicate that, compared with conventional transfer matrix method, geo-information tupu has obvious advantage in analyzing land use changes that it can demonstrate the spatial distribution of interest region, display the multi-dimensional spatial information.
文摘This paper takes Zhexi hydraulic region in Taihu Basin as a study area. On the basis of hydraulic analysis function of Arcgis8.3, the drainages were delineated by selecting the monitoring points and discharge stations as outlets. The landuse map were finished by denoting the TM/ETM image. The precipitation map was finished by spatial interpolation according to the rainfall monitoring records. Overlaying the drainage boundary, landuse map and precipitation map, the rainfall, different landuse type area, and runoff pollution concentration and runoff were calculated. Based on these data in different sub-watersheds, by Origin7.0 regression tool, an equation is established to predict runoff using the relationships between runoff, precipitation depth and land use patterns in each of the sub-watersheds. Selecting the sub-watershed which is mainly composed of forest landuse type, the mean runoff concentration (MRC) from sub-watershed has been estimated. The mean runoff concentration of farmland has been estimated by the same methods after the contribution of forest landuse type was removed. The results are: for the forest landuse type, the mean runoff concentrations of COD, BOD, Total N and Total P are 2.95 mg/l, 1.080 mg/l, 0.715 mg/l, and 0.039 mg/l, respectively; for the farmland, the mean runoff concentrations of COD, BOD, Total N and Total P are 5.721 mg/l, 3.097 mg/l, 2.092 mg/l, and 0.166 mg/l, respectively. By using these results, the agriculture non-point pollution loads have been assessed. The loads of COD, BOD, Total N and Total P in Zhexi region are 14,631.69 t/a, 6401.93 t/a, 4281.753 t/a and 287.67 t/a, respectively.
文摘This paper describes a GIS-based sp atial analysis method that combines qualitative analysis and quantita-tive analysis to characterize land-use patterns and predict the trend of future land-use changes in Haizhu Di strict of Guangzhou City,China.Spatial tech nique is introduced to manage land-u se data and derive information of lan d-use changes.Through the case study for t he selected area,it is demonstrated that the method and technique introd uced in the paper can be effectively utilized fo r the analysis of urban land-use chan ges.Based upon this analysis,the paper also pro-vides discussions and recommendati on on urban land-use planning,urban planning and land management.Both l and-use maps of Haizhu District of Guangzhou in 1995and 1997and the remote sensin g images of 1999are utilized in the cu r-rent research.It is convenient to ge t various statistic data and to combi ne attribute data with spatial data s o as to analyze land-use changes in a geographic con text,which is especially suitable f or the need of urban construction dep artment,ur-ban management department and urban planning department.
基金Project supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX3-SW-427), the National Key Basic Research Support Foundation of China (NKBRSF) (No. 2002CB410810) and the China Scholarship Council (No. 2003836044).
文摘In China, accelerating industrialization and urbanization followinghigh-speed economic development and population increases have greatly impacted land use/coverchanges, making it imperative to obtain accurate and up to date iufbimation on changes soas toevaluate their environmental effects. The major purpose of this study was to develop a new method tofuse lower spatial resolution multispectral satellite images with higher spatial resolutionpanchromatic ones to assist in land use/cover mapping.An algorithm of a new fusion method known asedge enhancement intensity modulation (EEIM) was proposed to merge two optical image data sets ofdifferent spectral ranges. The results showed that the EEIM image was quite similar in color tolower resolution multispectral images, and the fused product was better able to preserve spectralinformation. Thus, compared to conventional approaches, the spectral distortion of the fused imageswas markedly reduced. Therefore, the EEIM fusion method could be utilized to fuse remote sensingdata from the same or different sensors, including TM images and SPOT5 panchromatic images,providing high quality land use/cover images.
基金supported by the National Natural Science Foundation of China (NSFC) (No.30571112).
文摘Due to inappropriate planning and management, accelerated urban growth and tremendous loss in land, especially cropland, have become a great challenge for sustainable urban development in China, especially in developed urban area in the coastal regions; therefore, there is an urgent need to effectively detect and monitor the land use changes and provide accurate and timely information for planning and management. In this study a method combining principal component analysis (PCA) of multisensor satellite images from SPOT (systeme pour l'observation de la terre or earth observation satellite)-5 multispectral (XS) and Landsat-7 enhanced thematic mapper (ETM) panchromatic (PAN) data, and supervised classification was used to detect and analyze the dynamics of land use changes in the city proper of Hangzhou. The overall accuracy of the land use change detection was 90.67% and Kappa index was 0.89. The results indicated that there was a considerable land use change (10.03% of the total area) in the study area from 2001 to 2003, with three major types of land use conversions: from cropland into built-up land, construction site, and water area (fish pond). Changes from orchard land into built-up land were also detected. The method described in this study is feasible and useful for detecting rapid land use change in the urban area.
基金the National Autonomous University of Mexico, under project DGAPA-PAPIIT number IN-300911-3
文摘This investigation is an analysis of the influence of landform instability on the distribution of land-use dynamics in a hydrographical basin, located in the Mexican Volcanic Belt mountain range (central Mexico), currently affected by substantial changes in land use and deforestation. A landform map was produced, in addition to seven attribute maps - altimetry, drainage density, slope, relief energy, potential erosion, geology and tectonics - which were considered as factors for determining landform instability through Multi-criteria Evaluation Analysis. Likewise, the direction and rhythm of land-use dynamics were analyzed in four dates - between 1976 and 2000 - and cross tabulations were made between them, in order to analyze the trends and processes of land-use dynamics. Afterwards, the databases obtained were cross tabulated with the landform variables to derive areas, percentages and correlation indices. In the study area, high-instability landforms are associated with most ancient volcanic and sedimentary landforms, where high altitude, drainage density, slope and potential to develop gravitational and fluvial processes are the major factors favouring a land-use pattern, dominated by the conservation of extensive forest land, abandonment of human land use and regeneration of disturbed areas. In contrast, low-instability landforms correspond to alluvial plains and lava hills covered by pyroclasts, where low potential erosion to develop fluvial processes, added to water and soil availability and accessibility, have favoured a land-use pattern dominated by the expansion of agroforestry plantations and human settlements, showing a marked trend towards either intensification or permanence of the current land use and with little abandonment and regeneration.
基金supported by Academician Foundation of China (for Yuan and Zheng)Shanghai Science and Technology Committee Program - Special for EXPO under Grant No.10DZ0581600 and Grant SHUES2011A07 from Shanghai Institute of Urban Ecology and Sustainability(for Zhao)+1 种基金partially supported by US National Sci-ence Foundation Award 0962107 (for Zheng and Liu)Award 1061998 (for Zheng)
文摘This study aims to figure out satellite imaging mechanisms for submerged sand ridges in the shallow water region in the case of the flow parallel to the topography corrugation.Solving the disturbance governing equations of the shear-flow yields the analytical solutions of the secondary circulation.The solutions indicate that a flow with a parabolic horizontal velocity shear and a sinusoidal vertical velocity shear will induce a pair of vortexes with opposite signs distributed symmetrically on the two sides of central line of a rectangular canal.In the case of the presence of surface Ekman layer with the direction of Ekman current opposite to(coincident with) the mean flow,the two vortexes converge(diverge) at the central line of canal in the upper layer and form a surface current convergent(divergent) zone along the central line of the canal.In the case of the absence of surface Ekman layer,there is no convergent(divergent) zone formed over the sea surface.The theoretical results are applied to interpretations of three convergent cases,one divergent case and statistics of 27 cases of satellite observations in the submerged sand ridge region of the Liaodong Shoal in the Bohai Sea.We found that the long,finger-like,bright patterns on SAR images are corresponding to the locations of the canals(or tidal channels) formed by two adjacent sand ridges rather than the sand ridges themselves.
基金Under the auspices of National Natural Science Foundation of China(No.41101039,41371068)
文摘The cold-island effect of urban wetlands has received increasing attention in recent years due to its important role in the alleviation of urban heat islands.Hangzhou,a representative rapidly urbanizing city with rich wetlands in China,was selected as a case study for researching the changes that the urban wetlands have undergone and their impact on the urban thermal environment.Land surface temperature(LST) was acquired from the thermal infrared data of Landsat 5 Thematic Mapper(TM) images in 1990,1995,2000,2006,and 2010,using the single-channel method.The results are as follows:1) considering the changes in land use,the urban wetlands located to the west of Hangzhou have decreased significantly during 1990–2010 because of rapid urbanization.In the Xixi Wetland,the change in land use was relatively small and most of the water body and vegetation were preserved.However,to the east of the Xixi Wetland,large areas of water body and vegetation have been replaced by built-up land as a result of the urbanization process;2) considering the change in LST,it was found from land surface temperature retrieval that the changing spatial pattern of the thermal field was highly correlated with land use changes.Low temperature regions of the eastern Xixi Wetland were gradually eroded by high temperature regions,and the centroid of the heat island in East Xixi was found to be constantly shifting westward.In addition,the difference in LST between the Xixi Wetland and East Xixi has increased;3) considering the impact factors for this area,land use structure and patch shape were found to have a significant impact on LST,shown by the results of multiple linear stepwise regressions.Increasing the size of the wetlands in urban planning is considered to be the most effective measure in alleviating the urban heat island effect.Moreover,reducing the spatial complexity of landscape patches also contributes to the alleviation of the urban heat island effect.
基金supported partially by the National Natural Science Foundation of China (Nos.40774009 and 40974016) the National Hi-tech R&D Program of China (No. 2009AA121402)+1 种基金 the Special Project Fund of Taishan Scholars of Shandong Province China (No. TSXZ0502) the Research & Innovation Team Support Program of SDUST China
文摘The DInSAR technique is used for monitoring the desert height changes to study sandstorms. Hunshandake Sandy Land, as the test area, is one of the main sources of sandstorms in Beijing. In order to study the sandstorm source and its impact, a pair of EnviSat ASAR images of Oct. 11, 2005, and Oct. 26, 2004, is processed on the basis of analysis of six ERS-2 and EnviSat radar images. After the image configuration, flat earth effect correction, data filtering, phase unwrapping, and geo-coding, a deformation model over Hunshandake desert is built. According to the results, the height decreased in most areas and increased in a few areas, which basically coincides with the strong sandstorm appearing in Beijing in the Spring of 2005. The results show DInSAR has an important role in monitoring of desert surface deformation.
基金Project 40771167 supported by the National Natural Science Foundation of China
文摘GIS- or CAD-based technology has been widely used for cartographic maps in coal mines, but structural gaps between such maps make it difficult to provide an integrated map service, for any specific purpose, at higher levels. There is no uniform platform that can be used to manage all involved maps. The main reason for this is that datasets are submitted by individual coal mines using their individual, diverse software. No consistent model is used within the software for data abstraction and symbolization. This paper first reviews all the essential specifications concerning OGC (Open Geospatial Consortium) interoperability. Then an OGC standard-oriented architecture is proposed to provide distributed coal mine map services. Within this new architecture the management of spatial data archives, and the integration of coal mine maps, are achieved through the interfaces of geospatial services. Finally an open source geospatial approach is suggested to implement the proposed scheme. A case study of the Huaibei Coal Group is used to demonstrate the proposal.
基金Under the auspices of Jiangsu Provincial Natural ScienceFoundation(No .BK2002420 )
文摘Nowadays, remote sensing imagery, especially with its high spatialresolution, has become an indispensable tool to provide timely up-gradation of urban land use andland cover information, which is a prerequisite for proper urban planning and management. Thepossible method described in the present paper to obtain urban land use types is based on theprinciple that land use can be derived from the land cover existing in a neighborhood. Here, movingwindow is used to represent the spatial pattern of land cover within a neighborhood and seven windowsizes (61mx61m, 68mx68m, 75mx75m, 87mx87m, 99mx99m, 110mx110m and 121mxl21m) are applied todetermining the most proper window size. Then, the unsupervised method of ISODATA is employed toclassify the layered land cover density maps obtained by the moving window. The results of accuracyevaluation show that the window size of 99mx99m is proper to infer urban land use categories and theproposed method has produced a land use map with a total accuracy of 85%.