In this article, two split-step finite difference methods for Schrodinger-KdV equations are formulated and investigated. The main features of our methods are based on:(i) The applications of split-step technique for S...In this article, two split-step finite difference methods for Schrodinger-KdV equations are formulated and investigated. The main features of our methods are based on:(i) The applications of split-step technique for Schrodingerlike equation in time.(ii) The utilizations of high-order finite difference method for KdV-like equation in spatial discretization.(iii) Our methods are of spectral-like accuracy in space and can be realized by fast Fourier transform efficiently. Numerical experiments are conducted to illustrate the efficiency and accuracy of our numerical methods.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.11571181
文摘In this article, two split-step finite difference methods for Schrodinger-KdV equations are formulated and investigated. The main features of our methods are based on:(i) The applications of split-step technique for Schrodingerlike equation in time.(ii) The utilizations of high-order finite difference method for KdV-like equation in spatial discretization.(iii) Our methods are of spectral-like accuracy in space and can be realized by fast Fourier transform efficiently. Numerical experiments are conducted to illustrate the efficiency and accuracy of our numerical methods.