期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于用户偏好评价的龟形蛇纹寿文化产品设计研究 被引量:9
1
作者 苏建宁 任芳冉 +2 位作者 师容 杨文瑾 刘晓武 《包装工程》 CAS 北大核心 2019年第24期33-38,64,共7页
目的针对文化产品创意设计,构建基于用户偏好评价的设计方法,提升产品的用户满意度,丰富文化产品设计思路。方法应用图案学的基础分析法,归纳出龟形蛇纹寿文化的文化特征;采用形态分析法解构产品,归纳出目标产品造型设计特征;运用正交... 目的针对文化产品创意设计,构建基于用户偏好评价的设计方法,提升产品的用户满意度,丰富文化产品设计思路。方法应用图案学的基础分析法,归纳出龟形蛇纹寿文化的文化特征;采用形态分析法解构产品,归纳出目标产品造型设计特征;运用正交试验构建样本,通过问卷调查获取基于用户偏好评价的设计特征,将文化特征进行形态推演融入产品造型,进而生成设计方案,根据用户偏好评价进行筛选;进一步深入细化方案,完成文化产品创意设计。结果针对龟形蛇纹寿文化快客杯设计,完成基于用户偏好评价的产品创意设计。结论通过用户偏好评价,客观定位文化产品设计的设计特征和文化特征,获得用户感知度较高的产品设计方案,满足用户对产品的视觉需求和文化的感知需求,有效提升文化产品的用户满意度。 展开更多
关键词 龟形蛇纹寿文化 产品设计 用户偏好评价 正交试验
下载PDF
用户隐式评价的农业知识协同过滤推荐算法优化与仿真
2
作者 刘波 郭平 +1 位作者 沈岳 丁德红 《物联网技术》 2015年第8期76-79,共4页
基于湖南国家农村农业信息化示范省建设项目农业知识抽取与推荐研究,提出了基于用户隐式评价的农业知识协同过滤推荐算法。该算法主要针对协同过滤算法中用户偏好描述粒度大和评价矩阵稀疏引起的相似度计算不准确问题,通过建立农业知识... 基于湖南国家农村农业信息化示范省建设项目农业知识抽取与推荐研究,提出了基于用户隐式评价的农业知识协同过滤推荐算法。该算法主要针对协同过滤算法中用户偏好描述粒度大和评价矩阵稀疏引起的相似度计算不准确问题,通过建立农业知识标准特征矩阵和用户评分项目内容权重矩阵,然后基于内容的特征对评价矩阵进行填充,再基于项目协同过滤算法推荐相应的知识。使用农业数据集论证了本算法也适合农业文本知识推荐。该方法既改善了数据稀疏性,同时又反映了用户的个性兴趣。 展开更多
关键词 协同过滤推荐 用户偏好-项目评价矩阵 混合推荐算法 农业知识服务
下载PDF
基于正交试验的玫瑰椅再设计研究 被引量:2
3
作者 关瑛 王若羽 刘粟瑶 《工业设计》 2022年第7期26-28,共3页
为了突破现代家具产品的创新思路,文章应用图案构成法、形态解析法完成典型文化元素与目标产品造型的特征归纳,调研获取用户需求特征并设计正交试验;依据最优试验组合生成设计方案,采取用户偏好评价法筛选出最优方案,验证设计方法的可... 为了突破现代家具产品的创新思路,文章应用图案构成法、形态解析法完成典型文化元素与目标产品造型的特征归纳,调研获取用户需求特征并设计正交试验;依据最优试验组合生成设计方案,采取用户偏好评价法筛选出最优方案,验证设计方法的可行性。选取回纹为典型文化元素、玫瑰椅为目标载体完成基于正交试验的产品设计。实例证明,以传统元素的提取再造、产品形态的解构重组为切入点,结合正交试验所提出家具设计新方法可行有效。 展开更多
关键词 正交试验 用户偏好评价 回纹 玫瑰椅
下载PDF
User preferences-aware recommendation for trustworthy cloud services based on fuzzy clustering 被引量:1
4
作者 马华 胡志刚 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3495-3505,共11页
The cloud computing has been growing over the past few years, and service providers are creating an intense competitive world of business. This proliferation makes it hard for new users to select a proper service amon... The cloud computing has been growing over the past few years, and service providers are creating an intense competitive world of business. This proliferation makes it hard for new users to select a proper service among a large amount of service candidates. A novel user preferences-aware recommendation approach for trustworthy services is presented. For describing the requirements of new users in different application scenarios, user preferences are identified by usage preference, trust preference and cost preference. According to the similarity analysis of usage preference between consumers and new users, the candidates are selected, and these data about service trust provided by them are calculated as the fuzzy comprehensive evaluations. In accordance with the trust and cost preferences of new users, the dynamic fuzzy clusters are generated based on the fuzzy similarity computation. Then, the most suitable services can be selected to recommend to new users. The experiments show that this approach is effective and feasible, and can improve the quality of services recommendation meeting the requirements of new users in different scenario. 展开更多
关键词 trustworthy service service recommendation user preferences-aware fuzzy clustering
下载PDF
QoS Evaluation for Web Service Recommendation 被引量:1
5
作者 MA You XIN Xin +3 位作者 WANG Shangguang LI Jinglin SUN Qibo YANG Fangchun 《China Communications》 SCIE CSCD 2015年第4期151-160,共10页
Web service recommendation is one of the most important fi elds of research in the area of service computing. The two core problems of Web service recommendation are the prediction of unknown Qo S property values and ... Web service recommendation is one of the most important fi elds of research in the area of service computing. The two core problems of Web service recommendation are the prediction of unknown Qo S property values and the evaluation of overall Qo S according to user preferences. Aiming to address these two problems and their current challenges, we propose two efficient approaches to solve these problems. First, unknown Qo S property values were predicted by modeling the high-dimensional Qo S data as tensors, by utilizing an important tensor operation, i.e., tensor composition, to predict these Qo S values. Our method, which considers all Qo S dimensions integrally and uniformly, allows us to predict multi-dimensional Qo S values accurately and easily. Second, the overall Qo S was evaluated by proposing an efficient user preference learning method, which learns user preferences based on users' ratings history data, allowing us to obtain user preferences quantifiably and accurately. By solving these two core problems, it became possible to compute a realistic value for the overall Qo S. The experimental results showed our proposed methods to be more efficient than existing methods. 展开更多
关键词 Web service recommendation QoS prediction user preference overall QoSevaluation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部