为在直升机旋翼气动性能数值模拟时简化建模过程、缩减计算时间,利用用户自定义函数(User Defined Function,UDF)设计混合模型盘激励模型和线激励模型,并对简单旋翼的悬停工况进行模拟.与风洞试验结果的对比表明:所设计的混合模型在简...为在直升机旋翼气动性能数值模拟时简化建模过程、缩减计算时间,利用用户自定义函数(User Defined Function,UDF)设计混合模型盘激励模型和线激励模型,并对简单旋翼的悬停工况进行模拟.与风洞试验结果的对比表明:所设计的混合模型在简化旋翼模型的同时,能有效地计算旋翼的气动特性,模拟旋翼悬停时的流场,具有正确性和可行性;盘激励模型作为定常计算模型能够较快地计算得到旋翼的气动性能,缺点是不能体现每个桨叶对流场的单独作用;所设计的线激励模型在计算时由于所用的诱导速度为平均值,所以计算结果中旋翼效率比实际值偏高;通过与粒子图像测速(Particle Image Velocimetry,PIV)测量结果对比发现,线激励模型能较好地模拟出桨尖涡的分布.展开更多
轮毂电驱动技术的研究是未来新能源驱动体系研究的重要方向。随着轮毂电驱动对转速的要求越来越高,搅油功率损失成为不可忽略的部分,甚至高达功率总损失的50%~80%。现有的计算搅油损失的方法主要是采用简单的经验公式,无法适用于复杂的...轮毂电驱动技术的研究是未来新能源驱动体系研究的重要方向。随着轮毂电驱动对转速的要求越来越高,搅油功率损失成为不可忽略的部分,甚至高达功率总损失的50%~80%。现有的计算搅油损失的方法主要是采用简单的经验公式,无法适用于复杂的行星齿轮传动。为此,采用计算流体力学(Computational Fluid Dynamics,CFD)软件与C语言用户自定义函数(User Defined Function,UDF)对两级行星齿轮传动飞溅润滑进行联合仿真,实现了油-气两相瞬态流场可视化;通过提取表面的压力和黏性力,得到了太阳轮、行星轮及行星架的搅油损失;对25种工况进行仿真与分析,得到了搅油功率损失随转速和浸油深度的变化趋势。结果表明,搅油功率损失随转速和浸油深度的增加而增大,且无明显的拐点,实现最小搅油损失应当在保证充分润滑的前提下取最小的浸油深度。展开更多
文摘为在直升机旋翼气动性能数值模拟时简化建模过程、缩减计算时间,利用用户自定义函数(User Defined Function,UDF)设计混合模型盘激励模型和线激励模型,并对简单旋翼的悬停工况进行模拟.与风洞试验结果的对比表明:所设计的混合模型在简化旋翼模型的同时,能有效地计算旋翼的气动特性,模拟旋翼悬停时的流场,具有正确性和可行性;盘激励模型作为定常计算模型能够较快地计算得到旋翼的气动性能,缺点是不能体现每个桨叶对流场的单独作用;所设计的线激励模型在计算时由于所用的诱导速度为平均值,所以计算结果中旋翼效率比实际值偏高;通过与粒子图像测速(Particle Image Velocimetry,PIV)测量结果对比发现,线激励模型能较好地模拟出桨尖涡的分布.
文摘轮毂电驱动技术的研究是未来新能源驱动体系研究的重要方向。随着轮毂电驱动对转速的要求越来越高,搅油功率损失成为不可忽略的部分,甚至高达功率总损失的50%~80%。现有的计算搅油损失的方法主要是采用简单的经验公式,无法适用于复杂的行星齿轮传动。为此,采用计算流体力学(Computational Fluid Dynamics,CFD)软件与C语言用户自定义函数(User Defined Function,UDF)对两级行星齿轮传动飞溅润滑进行联合仿真,实现了油-气两相瞬态流场可视化;通过提取表面的压力和黏性力,得到了太阳轮、行星轮及行星架的搅油损失;对25种工况进行仿真与分析,得到了搅油功率损失随转速和浸油深度的变化趋势。结果表明,搅油功率损失随转速和浸油深度的增加而增大,且无明显的拐点,实现最小搅油损失应当在保证充分润滑的前提下取最小的浸油深度。