期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于用户兴趣的FP-TREE算法的改进及应用 被引量:5
1
作者 郑滟 朱群雄 《计算机工程与应用》 CSCD 2012年第11期143-147,共5页
关联规则主要通过历史数据来找出某些隐性的规律,但是针对不同用户,不同的规则更为有效,因此如何找出比较有价值的规则引起了人们的广泛关注。提出一种基于用户兴趣模型的改进关联规则算法,该算法从用户分类的角度找到适合不同用户的不... 关联规则主要通过历史数据来找出某些隐性的规律,但是针对不同用户,不同的规则更为有效,因此如何找出比较有价值的规则引起了人们的广泛关注。提出一种基于用户兴趣模型的改进关联规则算法,该算法从用户分类的角度找到适合不同用户的不同规则。通过在学校教学评估中的应用,验证了算法的有效性。 展开更多
关键词 用户推荐模型 FP-TREE 高校教评
下载PDF
A Probabilistic Rating Prediction and Explanation Inference Model for Recommender Systems 被引量:3
2
作者 WANG Hanshi FU Qiujie +1 位作者 LIU Lizhen SONG Wei 《China Communications》 SCIE CSCD 2016年第2期79-94,共16页
Collaborative Filtering(CF) is a leading approach to build recommender systems which has gained considerable development and popularity. A predominant approach to CF is rating prediction recommender algorithm, aiming ... Collaborative Filtering(CF) is a leading approach to build recommender systems which has gained considerable development and popularity. A predominant approach to CF is rating prediction recommender algorithm, aiming to predict a user's rating for those items which were not rated yet by the user. However, with the increasing number of items and users, thedata is sparse.It is difficult to detectlatent closely relation among the items or users for predicting the user behaviors. In this paper,we enhance the rating prediction approach leading to substantial improvement of prediction accuracy by categorizing according to the genres of movies. Then the probabilities that users are interested in the genres are computed to integrate the prediction of each genre cluster. A novel probabilistic approach based on the sentiment analysis of the user reviews is also proposed to give intuitional explanations of why an item is recommended.To test the novel recommendation approach, a new corpus of user reviews on movies obtained from the Internet Movies Database(IMDB) has been generated. Experimental results show that the proposed framework is effective and achieves a better prediction performance. 展开更多
关键词 collaborative filtering recommendersystems rating prediction sentiment analysis matrix factorization recommendation explanation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部