期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习挖掘用户搜索主题研究
1
作者 宋毅 《计算机技术与发展》 2021年第1期43-47,共5页
主要研究了基于深度学习技术挖掘用户搜索主题相关的感兴趣内容。通过深度挖掘算法分析用户搜索记录、查询历史以及用户感兴趣的相关文档视为用户搜索主题数据的来源,进而挖掘兴趣主题。挖掘模型主要采用向量空间模型,将用户搜索主题模... 主要研究了基于深度学习技术挖掘用户搜索主题相关的感兴趣内容。通过深度挖掘算法分析用户搜索记录、查询历史以及用户感兴趣的相关文档视为用户搜索主题数据的来源,进而挖掘兴趣主题。挖掘模型主要采用向量空间模型,将用户搜索主题模型表示成用户搜索主题向量形式。形成主题和用户兴趣关系网,用户搜索主题向量的构造过程:选择一组用户查询词,并对它们进行深度挖掘分类,最后用它们构造用户搜索主题特征向量,进而分析用户兴趣点。结合用户随着时间的变化,以及过程中有不用的搜索词,以及无关的搜索噪声词去掉,调整兴趣度,用户搜索主题需要具有更新学习机制,动态跟踪了用户兴趣变化趋势。该用户搜索主题研究过程克服了数据稀疏、类别偏差、扩展性差等缺点。实验结果表明,该模型识别用户搜索主题准确率良好。 展开更多
关键词 深度学习 用户搜索主题 用户模型 挖掘兴趣 个性化搜索
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部