期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于用户项目属性偏好的协同过滤推荐算法 被引量:5
1
作者 吕成戍 《计算机技术与发展》 2018年第4期152-156,160,共6页
协同过滤推荐系统是广泛应用的推荐技术之一,但是其面临着推荐精度低和托攻击问题。为了提高传统协同过滤推荐系统的推荐精度和抗攻击能力,提出了一种基于用户项目属性偏好的鲁棒协同过滤推荐算法。该算法在用户相似性计算过程中引入用... 协同过滤推荐系统是广泛应用的推荐技术之一,但是其面临着推荐精度低和托攻击问题。为了提高传统协同过滤推荐系统的推荐精度和抗攻击能力,提出了一种基于用户项目属性偏好的鲁棒协同过滤推荐算法。该算法在用户相似性计算过程中引入用户项目属性偏好相似性,并通过动态加权因子与传统的用户评分相似性进行组合,获得用户的综合相似性,在用户共同评分项匮乏的情况下也可以根据相同的项目属性偏好度量用户相似性,缓解评分数据稀疏性。在预测评分阶段,根据用户项目属性偏好类型条件过滤最近邻集合中的攻击概貌,消除攻击概貌对评分预测的不良影响,提高系统的抗攻击能力。实验结果表明,该算法可以有效提高推荐系统的推荐精度和抗攻击能力。 展开更多
关键词 用户项目属性偏好 用户综合相似性 托攻击 协同过滤 推荐系统
下载PDF
User preferences-aware recommendation for trustworthy cloud services based on fuzzy clustering 被引量:1
2
作者 马华 胡志刚 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3495-3505,共11页
The cloud computing has been growing over the past few years, and service providers are creating an intense competitive world of business. This proliferation makes it hard for new users to select a proper service amon... The cloud computing has been growing over the past few years, and service providers are creating an intense competitive world of business. This proliferation makes it hard for new users to select a proper service among a large amount of service candidates. A novel user preferences-aware recommendation approach for trustworthy services is presented. For describing the requirements of new users in different application scenarios, user preferences are identified by usage preference, trust preference and cost preference. According to the similarity analysis of usage preference between consumers and new users, the candidates are selected, and these data about service trust provided by them are calculated as the fuzzy comprehensive evaluations. In accordance with the trust and cost preferences of new users, the dynamic fuzzy clusters are generated based on the fuzzy similarity computation. Then, the most suitable services can be selected to recommend to new users. The experiments show that this approach is effective and feasible, and can improve the quality of services recommendation meeting the requirements of new users in different scenario. 展开更多
关键词 trustworthy service service recommendation user preferences-aware fuzzy clustering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部