期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进TFT的用户网络障碍预测方法
1
作者 卢瑾 王欣刚 陈于锋 《江苏通信》 2024年第5期82-86,共5页
随着互联网的发展,网络已渗透到生活各方面,网络故障对生产和生活的影响日益严重。尽管用户网络故障难以完全避免,但通过预测故障可帮助运营商快速修复,减少对生活的干扰。本文提出改进的TFT深度学习模型,通过多种技术提高预测性能。首... 随着互联网的发展,网络已渗透到生活各方面,网络故障对生产和生活的影响日益严重。尽管用户网络故障难以完全避免,但通过预测故障可帮助运营商快速修复,减少对生活的干扰。本文提出改进的TFT深度学习模型,通过多种技术提高预测性能。首先,采用基于皮尔逊系数和特征不确定性的暂退算法,将对故障影响小的特征置零,避免模型过拟合。其次,引入时间卷积神经网络与带门控单元的循环神经网络编码器,加强模型对时间序列局部特征的提取。最后,使用Huber损失函数以减弱群体故障带来的异常数据影响。实验结果显示,改进的TFT算法在预测性能上优于传统算法,并通过案例展示了其在网络群障发现中的应用价值,提供了解决网络故障的新思路。 展开更多
关键词 TFT 用户网络障碍预测 皮尔逊系数 特征不确定系数 Huber损失函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部