Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network cap...Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network capacity degradations. In this paper, a mixed stochastic user equilibrium model was proposed to describe the interactive route choice behaviors between ATIS equipped and unequipped drivers on a degradable transport network. In the proposed model the information accessibility of equipped drivers was reflected by lower degree of uncertainty in their stochastic equilibrium flow distributions, and their behavioral adaptability was captured by multiple equilibrium behaviors over the stochastic network state set. The mixed equilibrium model was formulated as a fixed point problem defined in the mixed route flows, and its solution was achieved by executing an iterative algorithm. Numerical experiments were provided to verify the properties of the mixed network equilibrium model and the efficiency of the iterative algorithm.展开更多
The traffic equilibrium assignment problem under tradable credit scheme(TCS) in a bi-modal stochastic transportation network is investigated in this paper. To describe traveler’s risk-taking behaviors under uncertain...The traffic equilibrium assignment problem under tradable credit scheme(TCS) in a bi-modal stochastic transportation network is investigated in this paper. To describe traveler’s risk-taking behaviors under uncertainty, the cumulative prospect theory(CPT) is adopted. Travelers are assumed to choose the paths with the minimum perceived generalized path costs, consisting of time prospect value(PV) and monetary cost. At equilibrium with a given TCS, the endogenous reference points and credit price remain constant, and are consistent with the equilibrium flow pattern and the corresponding travel time distributions of road sub-network. To describe such an equilibrium state, the CPT-based stochastic user equilibrium(SUE) conditions can be formulated under TCS. An equivalent variational inequality(VI) model embedding a parameterized fixed point(FP) model is then established, with its properties analyzed theoretically. A heuristic solution algorithm is developed to solve the model, which contains two-layer iterations. The outer iteration is a bisection-based contraction method to find the equilibrium credit price, and the inner iteration is essentially the method of successive averages(MSA) to determine the corresponding CPT-based SUE network flow pattern. Numerical experiments are provided to validate the model and algorithm.展开更多
Compared with standard logit-based stochastic user equilibrium assignment model,the C-logit model describes route choice behavior in a more realistic way by considering the overlapping effect between routes.This paper...Compared with standard logit-based stochastic user equilibrium assignment model,the C-logit model describes route choice behavior in a more realistic way by considering the overlapping effect between routes.This paper investigates the inefficiency upper bounds of this model against the deterministic system optimum and the C-logit stochastic system optimum in terms of the total network travel time.It is found that the commonality factor of overlapping routes significantly affects the inefficiency bound,besides link congestion degree,total demand and the number of feasible routes.If the commonality factor is not considered,the efficiency loss resulting from selfishly stochastic travel behavior will be to large extent underestimated.展开更多
基金Projects(51378119,51578150)supported by the National Natural Science Foundation of China
文摘Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network capacity degradations. In this paper, a mixed stochastic user equilibrium model was proposed to describe the interactive route choice behaviors between ATIS equipped and unequipped drivers on a degradable transport network. In the proposed model the information accessibility of equipped drivers was reflected by lower degree of uncertainty in their stochastic equilibrium flow distributions, and their behavioral adaptability was captured by multiple equilibrium behaviors over the stochastic network state set. The mixed equilibrium model was formulated as a fixed point problem defined in the mixed route flows, and its solution was achieved by executing an iterative algorithm. Numerical experiments were provided to verify the properties of the mixed network equilibrium model and the efficiency of the iterative algorithm.
基金Project(BX20180268)supported by National Postdoctoral Program for Innovative Talent,ChinaProject(300102228101)supported by Fundamental Research Funds for the Central Universities of China+1 种基金Project(51578150)supported by the National Natural Science Foundation of ChinaProject(18YJCZH130)supported by the Humanities and Social Science Project of Chinese Ministry of Education
文摘The traffic equilibrium assignment problem under tradable credit scheme(TCS) in a bi-modal stochastic transportation network is investigated in this paper. To describe traveler’s risk-taking behaviors under uncertainty, the cumulative prospect theory(CPT) is adopted. Travelers are assumed to choose the paths with the minimum perceived generalized path costs, consisting of time prospect value(PV) and monetary cost. At equilibrium with a given TCS, the endogenous reference points and credit price remain constant, and are consistent with the equilibrium flow pattern and the corresponding travel time distributions of road sub-network. To describe such an equilibrium state, the CPT-based stochastic user equilibrium(SUE) conditions can be formulated under TCS. An equivalent variational inequality(VI) model embedding a parameterized fixed point(FP) model is then established, with its properties analyzed theoretically. A heuristic solution algorithm is developed to solve the model, which contains two-layer iterations. The outer iteration is a bisection-based contraction method to find the equilibrium credit price, and the inner iteration is essentially the method of successive averages(MSA) to determine the corresponding CPT-based SUE network flow pattern. Numerical experiments are provided to validate the model and algorithm.
基金supported by the National Basic Research Program of China under Grant No.2012CB725401the National Natural Science Foundation of China under Grant Nos.71271001 and 71401083the Program for New Century Excellent Talents in University under Grant No.NCET-13-0025
文摘Compared with standard logit-based stochastic user equilibrium assignment model,the C-logit model describes route choice behavior in a more realistic way by considering the overlapping effect between routes.This paper investigates the inefficiency upper bounds of this model against the deterministic system optimum and the C-logit stochastic system optimum in terms of the total network travel time.It is found that the commonality factor of overlapping routes significantly affects the inefficiency bound,besides link congestion degree,total demand and the number of feasible routes.If the commonality factor is not considered,the efficiency loss resulting from selfishly stochastic travel behavior will be to large extent underestimated.