AIM: To investigate the protective effect and mechanisms of ghrelin postconditioning against hypoxia/reoxygenation (H/R)-induced injury in human gastric epithelial cells. METHODS: The model of H/R injury was establish...AIM: To investigate the protective effect and mechanisms of ghrelin postconditioning against hypoxia/reoxygenation (H/R)-induced injury in human gastric epithelial cells. METHODS: The model of H/R injury was established in gastric epithelial cell line (GES-1) human gastric epithelial cells. Cells were divided into seven groups: normal control group (N); H/R postconditioning group; DMSO postconditioning group (DM); ghrelin postconditioning group (GH); D-Lys3-GHRP-6 + ghrelin postconditioning group (D + GH); capsazepine + ghrelin postconditioning group (C + GH); and LY294002 + ghrelin postconditioning group (L + GH). 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to detect GES-1 cell viability. Hoechst 33258 fluorochrome staining and flow cytometry were conducted to determine apoptosis of GES-1cells. Spectrophotometry was performed to determine release of lactate dehydrogenate (LDH). Protein expression of Bcl-2, Bax, Akt, and glycogen synthase kinase (GSK)-3β was determined by western blotting. Expression of vanilloid receptor subtype 1 (VR1), Akt and GSK-3β was observed by immunocytochemistry. RESULTS: Compared with the H/R group, cell viability of the GH group was significantly increased in a dosedependent manner (55.9% ± 10.0% vs 69.6% ± 9.6%, 71.9% ± 17.4%, and 76.3% ± 13.3%). Compared with the H/R group, the percentage of apoptotic cells in the GH group significantly decreased (12.38% ± 1.51% vs 6.88% ± 0.87%). Compared with the GH group, the percentage of apoptotic cells in the D + GH group, C + GH group and L + GH groups significantly increased (11.70% ± 0.88%, 11.93% ± 0.96%, 10.20% ± 1.05% vs 6.88% ± 0.87%). There were no significant differences in the percentage of apoptotic cells between the H/R and DM groups (12.38% ± 1.51% vs 13.00% ± 1.13%). There was a significant decrease in LDH release following ghrelin postconditioning compared with the H/R group (561.58 ± 64.01 U/L vs 1062.45 ± 105.29 U/L). There was a significant increase in LDH release in the D + GH, C + GH and L + GH groups compared with the GH group (816.89 ± 94.87 U/L, 870.95 ± 64.06 U/L, 838.62 ± 118.45 U/L vs 561.58 ± 64.01 U/L). There were no significant differences in LDH release between the H/R and DM groups (1062.45 ± 105.29 U/L vs 1017.65 ± 68.90 U/L). Compared with the H/R group, expression of Bcl-2 and Akt increased in the GH group, whereas expression of Bax and GSK3β decreased. Compared with the GH group, expression of Bcl-2 decreased and Bax increased in the D + GH, C + GH and L + GH groups, and Akt decreased and GSK-3β increased in the L + GH group. The H/R group also upregulated expression of VR1 and GSK-3β and downregulated Akt. The number of VR1-positive and Akt-positive cells in the GH group significantly increased, whereas the number of GSK-3β-positive cells significantly decreased. These effects of ghrelin were reversed by capsazepine and LY294002.CONCLUSION: Ghrelin postconditioning protected against H/R-induced injury in human gastric epithelial cells, which indicated that this protection might be associated with GHS-R, VR1 and the PI3K/Akt signaling pathway.展开更多
Objective: To investigate the effect of ischemic postconditioning (1PO) on acute lung ischemia-reperfusion (I/R) injury and the protein expression of haeme oxygenase-1 (HO-1), a cytoprotective defense against o...Objective: To investigate the effect of ischemic postconditioning (1PO) on acute lung ischemia-reperfusion (I/R) injury and the protein expression of haeme oxygenase-1 (HO-1), a cytoprotective defense against oxidative injury. Methods: After being anesthetized with chloralhydrate, forty-eight healthy SD rats were randomly divided into 6 groups (8 in each): sham operation group (S group); I/R group: left lung hilum was clamped for 40 minutes followed by 105 minutes of reperfusion; IPO group: left lung hilum was clamped for40 minutes and postconditioned by 3 cycles of 30 seconds of reperfusion and 30 seconds of reocclusion; Heroin (HM)+ I/R group: heroin, an inducer of HO-1 was injected intraperitoneally at 40 μmol·kg^-1·day^-1 for two consecutive days prior to 40 minutes clamping of left lung hilum; ZnPPIX+IPO group: zinc protoporphyrin IX, an inhibitor of HO-1 was injected intraperitoneally at 20 mg·kg^-1 24 hours prior to 40 minutes clamping of left lung hilum; and HM+S group: HM was administered as in the HM+I/R group without inducing lung I/R. Arterial partial pressure of oxygen (PaO2) and malondialdehyde (MDA) content in serum were assessed. The left lung was removed for determination of wet/dry lung weight ratio and expression of HO-1 protein by immuno-histochemical technique and for light microscopic examination. Results: The PaO2 was significantly lower in all the experimental groups compared with sham group (90 roan Hg ±11 mmHg). However, the values of PaO2in IPO (81 mm Hg±7 mm Hg) and HM+I/R (80 mm Hg±9 mm Hg) were higher than that in I/R (63 mm Hg±9 mm Hg) and ZnPPIX+IPO (65 mm Hg±8 mm Hg) groups (P〈0.01). The protein expression of HO- 1 in lung tissue was significantly increased in I/R group compared with S group (P〈0.01). While the HO-1 protein expression was higher in IPO and HM+I/R groups as compared with I/R group (P〈0.05, P〈0.01 ). The lung wet/ dry (W/D) weight ratio and MDA content in serum were significantly increased in I/R group as compared with S or HM+S groups (P〈0.01), accompanied by severe lung tissue histological damage, which was attenuated either by IPO or by HM pretreatment (P〈0.01, IPO or HM+I/R vs. I/R). The protective effect of IPO was abolished by ZnPPIX. Conclusion: Ischemic postconditioning can attenuate the lung ischemia-reperfusion injury through upregulating the protein expression of HO-I that leads to reduced postischemic oxidative damage.展开更多
基金Supported by National Natural Science Foundation of China, No.30570671the Educational Department Science Research Foundation of Jiangsu Province, No. 99KJB310005 and 05KJB310134
文摘AIM: To investigate the protective effect and mechanisms of ghrelin postconditioning against hypoxia/reoxygenation (H/R)-induced injury in human gastric epithelial cells. METHODS: The model of H/R injury was established in gastric epithelial cell line (GES-1) human gastric epithelial cells. Cells were divided into seven groups: normal control group (N); H/R postconditioning group; DMSO postconditioning group (DM); ghrelin postconditioning group (GH); D-Lys3-GHRP-6 + ghrelin postconditioning group (D + GH); capsazepine + ghrelin postconditioning group (C + GH); and LY294002 + ghrelin postconditioning group (L + GH). 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to detect GES-1 cell viability. Hoechst 33258 fluorochrome staining and flow cytometry were conducted to determine apoptosis of GES-1cells. Spectrophotometry was performed to determine release of lactate dehydrogenate (LDH). Protein expression of Bcl-2, Bax, Akt, and glycogen synthase kinase (GSK)-3β was determined by western blotting. Expression of vanilloid receptor subtype 1 (VR1), Akt and GSK-3β was observed by immunocytochemistry. RESULTS: Compared with the H/R group, cell viability of the GH group was significantly increased in a dosedependent manner (55.9% ± 10.0% vs 69.6% ± 9.6%, 71.9% ± 17.4%, and 76.3% ± 13.3%). Compared with the H/R group, the percentage of apoptotic cells in the GH group significantly decreased (12.38% ± 1.51% vs 6.88% ± 0.87%). Compared with the GH group, the percentage of apoptotic cells in the D + GH group, C + GH group and L + GH groups significantly increased (11.70% ± 0.88%, 11.93% ± 0.96%, 10.20% ± 1.05% vs 6.88% ± 0.87%). There were no significant differences in the percentage of apoptotic cells between the H/R and DM groups (12.38% ± 1.51% vs 13.00% ± 1.13%). There was a significant decrease in LDH release following ghrelin postconditioning compared with the H/R group (561.58 ± 64.01 U/L vs 1062.45 ± 105.29 U/L). There was a significant increase in LDH release in the D + GH, C + GH and L + GH groups compared with the GH group (816.89 ± 94.87 U/L, 870.95 ± 64.06 U/L, 838.62 ± 118.45 U/L vs 561.58 ± 64.01 U/L). There were no significant differences in LDH release between the H/R and DM groups (1062.45 ± 105.29 U/L vs 1017.65 ± 68.90 U/L). Compared with the H/R group, expression of Bcl-2 and Akt increased in the GH group, whereas expression of Bax and GSK3β decreased. Compared with the GH group, expression of Bcl-2 decreased and Bax increased in the D + GH, C + GH and L + GH groups, and Akt decreased and GSK-3β increased in the L + GH group. The H/R group also upregulated expression of VR1 and GSK-3β and downregulated Akt. The number of VR1-positive and Akt-positive cells in the GH group significantly increased, whereas the number of GSK-3β-positive cells significantly decreased. These effects of ghrelin were reversed by capsazepine and LY294002.CONCLUSION: Ghrelin postconditioning protected against H/R-induced injury in human gastric epithelial cells, which indicated that this protection might be associated with GHS-R, VR1 and the PI3K/Akt signaling pathway.
基金This project was supported by the National Natural Science Foundation of China (No.30672033).
文摘Objective: To investigate the effect of ischemic postconditioning (1PO) on acute lung ischemia-reperfusion (I/R) injury and the protein expression of haeme oxygenase-1 (HO-1), a cytoprotective defense against oxidative injury. Methods: After being anesthetized with chloralhydrate, forty-eight healthy SD rats were randomly divided into 6 groups (8 in each): sham operation group (S group); I/R group: left lung hilum was clamped for 40 minutes followed by 105 minutes of reperfusion; IPO group: left lung hilum was clamped for40 minutes and postconditioned by 3 cycles of 30 seconds of reperfusion and 30 seconds of reocclusion; Heroin (HM)+ I/R group: heroin, an inducer of HO-1 was injected intraperitoneally at 40 μmol·kg^-1·day^-1 for two consecutive days prior to 40 minutes clamping of left lung hilum; ZnPPIX+IPO group: zinc protoporphyrin IX, an inhibitor of HO-1 was injected intraperitoneally at 20 mg·kg^-1 24 hours prior to 40 minutes clamping of left lung hilum; and HM+S group: HM was administered as in the HM+I/R group without inducing lung I/R. Arterial partial pressure of oxygen (PaO2) and malondialdehyde (MDA) content in serum were assessed. The left lung was removed for determination of wet/dry lung weight ratio and expression of HO-1 protein by immuno-histochemical technique and for light microscopic examination. Results: The PaO2 was significantly lower in all the experimental groups compared with sham group (90 roan Hg ±11 mmHg). However, the values of PaO2in IPO (81 mm Hg±7 mm Hg) and HM+I/R (80 mm Hg±9 mm Hg) were higher than that in I/R (63 mm Hg±9 mm Hg) and ZnPPIX+IPO (65 mm Hg±8 mm Hg) groups (P〈0.01). The protein expression of HO- 1 in lung tissue was significantly increased in I/R group compared with S group (P〈0.01). While the HO-1 protein expression was higher in IPO and HM+I/R groups as compared with I/R group (P〈0.05, P〈0.01 ). The lung wet/ dry (W/D) weight ratio and MDA content in serum were significantly increased in I/R group as compared with S or HM+S groups (P〈0.01), accompanied by severe lung tissue histological damage, which was attenuated either by IPO or by HM pretreatment (P〈0.01, IPO or HM+I/R vs. I/R). The protective effect of IPO was abolished by ZnPPIX. Conclusion: Ischemic postconditioning can attenuate the lung ischemia-reperfusion injury through upregulating the protein expression of HO-I that leads to reduced postischemic oxidative damage.