期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多变量数据聚类最优选择的用电关联分析算法 被引量:7
1
作者 苏欣 田浩 +3 位作者 秦昌龙 王浩 施雨 田文辉 《电网与清洁能源》 北大核心 2022年第4期86-94,103,共10页
针对多源用电大数据典型性分析结果不唯一且精度不高等问题,提出了一种多变量数据聚类最优选择的用电关联分析算法。算法借助小波变换日负荷聚类实现多源用电日负荷的相似性聚类,以提高数据分析的准确性;然后在获得分组上进行单次细粒... 针对多源用电大数据典型性分析结果不唯一且精度不高等问题,提出了一种多变量数据聚类最优选择的用电关联分析算法。算法借助小波变换日负荷聚类实现多源用电日负荷的相似性聚类,以提高数据分析的准确性;然后在获得分组上进行单次细粒度典型相关分析;利用典型相关分析的预测性验证典型权重准确性,以实现单次分析结果的最优选择,实现分析结果的唯一性。算法在北京地区非居民用电客户的用电、用气和天气三元数据集上仿真实验,结果发现在不同用户群体上三元数据的典型性相关曲线存在基本稳定、季节性和周期性变化等三种模式。与其他8种算法对比可知,所提算法的关联挖掘最为深入和准确,其中平均相关系数至少提高了1.52%,均方差误差至少降低了2.09%。 展开更多
关键词 多源用电数据 用电关联分析 分组聚类 广义特征值 典型权重
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部