期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于电力数据挖掘的涉污企业用电量预测方法研究
被引量:
2
1
作者
成贵学
乔臻
+1 位作者
滕予非
唐伟
《现代电子技术》
2022年第15期151-156,共6页
为对工业涉污企业进行准确管控,提出一种基于用电特性聚类与ConvLSTM神经网络算法结合的涉污企业用电量预测方法。对于企业用电数据中的数据异常与缺失的问题,采用局部离群因子算法(LOF)筛选异常值后输入至灰色模型中进行校正;通过K⁃me...
为对工业涉污企业进行准确管控,提出一种基于用电特性聚类与ConvLSTM神经网络算法结合的涉污企业用电量预测方法。对于企业用电数据中的数据异常与缺失的问题,采用局部离群因子算法(LOF)筛选异常值后输入至灰色模型中进行校正;通过K⁃means算法对修正后的企业历史用电数据进行特征提取并分析其用电特征,考虑影响用电量的因素不仅包括日期特性、节日特性,还提取了重污染天气下政府对涉污企业的管控特性;构建ConvLSTM模型,充分挖掘企业数据时序性特征,有效提高涉污企业短期用电量预测精度。选择四川省成都市涉污企业的用电数据验证模型算法的有效性。验证结果表明,所提方法对于不同企业、不同类型日期均更有效,能更精确地预测企业未来用电的趋势。
展开更多
关键词
企业
用电
量预测
ConvLSTM
LOF
灰色模型
K⁃means
聚
类
算法
时序性特征
用电特性聚类
下载PDF
职称材料
题名
基于电力数据挖掘的涉污企业用电量预测方法研究
被引量:
2
1
作者
成贵学
乔臻
滕予非
唐伟
机构
上海电力大学计算机科学与技术学院
国网四川省电力公司电力科学研究院
出处
《现代电子技术》
2022年第15期151-156,共6页
基金
国网四川省电力公司科技项目(52199718001A)。
文摘
为对工业涉污企业进行准确管控,提出一种基于用电特性聚类与ConvLSTM神经网络算法结合的涉污企业用电量预测方法。对于企业用电数据中的数据异常与缺失的问题,采用局部离群因子算法(LOF)筛选异常值后输入至灰色模型中进行校正;通过K⁃means算法对修正后的企业历史用电数据进行特征提取并分析其用电特征,考虑影响用电量的因素不仅包括日期特性、节日特性,还提取了重污染天气下政府对涉污企业的管控特性;构建ConvLSTM模型,充分挖掘企业数据时序性特征,有效提高涉污企业短期用电量预测精度。选择四川省成都市涉污企业的用电数据验证模型算法的有效性。验证结果表明,所提方法对于不同企业、不同类型日期均更有效,能更精确地预测企业未来用电的趋势。
关键词
企业
用电
量预测
ConvLSTM
LOF
灰色模型
K⁃means
聚
类
算法
时序性特征
用电特性聚类
Keywords
enterprise electricity consumption forecasting
ConvLSTM
LOF
grey model
K⁃means clustering algorithm
time⁃series feature
electricity characteristic clustering
分类号
TN911.1-34 [电子电信—通信与信息系统]
TP391.9 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于电力数据挖掘的涉污企业用电量预测方法研究
成贵学
乔臻
滕予非
唐伟
《现代电子技术》
2022
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部