Compressive and flexural strength,fracture energy,as well as fatigue property of pervious cement concrete with either supplementary cementitious materials (SCMs) or polymer intensified,were analyzed.Test results show ...Compressive and flexural strength,fracture energy,as well as fatigue property of pervious cement concrete with either supplementary cementitious materials (SCMs) or polymer intensified,were analyzed.Test results show that the strength development of SCM-modified pervious concrete (SPC) differs from that of polymer-intensified pervious concrete (PPC),and porosity has little effect on their strength growth.PPC has higher flexural strength and remarkably higher flexural-to-compressive strength ratio than SPC at the same porosity level.Results from fracture test of pervious concrete mixes with porosity around 19.5% show that the fracture energy increases with increasing the dosage of polymer,reflecting the ductile damage features rather than brittleness.PPC displays far longer fatigue life than SPC for any given failure probability and at any stress level.It is proved that two-parameter Weibull probability function describes the flexural fatigue of pervious concrete.展开更多
Geological disasters will happen in cold regions because of the effects of freeze-thaw cycles on rocks or soils, so studying the effects of these cycles on the mechanical characteristics and permeability properties of...Geological disasters will happen in cold regions because of the effects of freeze-thaw cycles on rocks or soils, so studying the effects of these cycles on the mechanical characteristics and permeability properties of rocks is very important. In this study, red sandstone samples were frozen and thawed with o, 4, 8 and 12 cycles, each cycle including 12 h of freezing and 12 h of thawing. The P-wave velocities of these samples were measured, and the mechanical properties and evolution of the steady-state permeabilities were investigated in a series of uniaxial and triaxial compression tests. Experimental results show that, with the increasing of cyclic freeze-thaw times, the P-wave velocity of the red sandstone decreases. The number of freeze-thaw cycles has a significant influence on the uniaxial compressive strength, elastic modulus, cohesion, and angle of internal friction. The evolution of permeability of the rock samples after cycles of freeze-thaw in a complete stress-strain process under triaxial compression is closely related to the variation of the microstructure in the rock. There is a highly corresponding relationship between volumetric strain and permeability with axial strain in all stages of the stress-strain behaviour.展开更多
HVFA (high-volume fly ash) concrete could be a sustainable way for by-product utilization to conserve natural resources and protect environment. HVFA concrete can play the role of a high-performance material that ma...HVFA (high-volume fly ash) concrete could be a sustainable way for by-product utilization to conserve natural resources and protect environment. HVFA concrete can play the role of a high-performance material that may be comparable to the conventional Portland cement concrete. The results of the research programme concerning the relationships between the composition of concrete (w/b ratio, fly ash content and type of cement) and their physical and mechanical properties are presented and discussed in the paper. It is found that the introduction of high-volume fly ash into concrete has caused a decrease in compressive strength at the early age of storage. The significant increase in strength was observed between 28 days and 90 days of curing. The high-volume fly ash concretes were characterized with lower water absorbability and sorptivity than control concrete.展开更多
基金Project(kfj080205)supported by Key Laboratory of Road Structure and Material of Ministry of Transport(Changsha),China
文摘Compressive and flexural strength,fracture energy,as well as fatigue property of pervious cement concrete with either supplementary cementitious materials (SCMs) or polymer intensified,were analyzed.Test results show that the strength development of SCM-modified pervious concrete (SPC) differs from that of polymer-intensified pervious concrete (PPC),and porosity has little effect on their strength growth.PPC has higher flexural strength and remarkably higher flexural-to-compressive strength ratio than SPC at the same porosity level.Results from fracture test of pervious concrete mixes with porosity around 19.5% show that the fracture energy increases with increasing the dosage of polymer,reflecting the ductile damage features rather than brittleness.PPC displays far longer fatigue life than SPC for any given failure probability and at any stress level.It is proved that two-parameter Weibull probability function describes the flexural fatigue of pervious concrete.
基金supported by the National Basic Research Program of China (973 Program) (Grant No. 2011CB013503)the National Natural Science Foundation of China (Grant No. 51374112)the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQN-PY112)
文摘Geological disasters will happen in cold regions because of the effects of freeze-thaw cycles on rocks or soils, so studying the effects of these cycles on the mechanical characteristics and permeability properties of rocks is very important. In this study, red sandstone samples were frozen and thawed with o, 4, 8 and 12 cycles, each cycle including 12 h of freezing and 12 h of thawing. The P-wave velocities of these samples were measured, and the mechanical properties and evolution of the steady-state permeabilities were investigated in a series of uniaxial and triaxial compression tests. Experimental results show that, with the increasing of cyclic freeze-thaw times, the P-wave velocity of the red sandstone decreases. The number of freeze-thaw cycles has a significant influence on the uniaxial compressive strength, elastic modulus, cohesion, and angle of internal friction. The evolution of permeability of the rock samples after cycles of freeze-thaw in a complete stress-strain process under triaxial compression is closely related to the variation of the microstructure in the rock. There is a highly corresponding relationship between volumetric strain and permeability with axial strain in all stages of the stress-strain behaviour.
文摘HVFA (high-volume fly ash) concrete could be a sustainable way for by-product utilization to conserve natural resources and protect environment. HVFA concrete can play the role of a high-performance material that may be comparable to the conventional Portland cement concrete. The results of the research programme concerning the relationships between the composition of concrete (w/b ratio, fly ash content and type of cement) and their physical and mechanical properties are presented and discussed in the paper. It is found that the introduction of high-volume fly ash into concrete has caused a decrease in compressive strength at the early age of storage. The significant increase in strength was observed between 28 days and 90 days of curing. The high-volume fly ash concretes were characterized with lower water absorbability and sorptivity than control concrete.