The authors treated 26 cases of dysequillibrium due tocerebellum or brain stem infarction byelectro-acupuncture from Aug 2000 - April 2002. Theresults were quite satisfactory and reported as follows.
Decreasing the flow completion time(FCT) and increasing the throughput are two fundamental targets in datacenter networks(DCNs), but current mechanisms mostly focus on one of the problems. In this paper, we propose OF...Decreasing the flow completion time(FCT) and increasing the throughput are two fundamental targets in datacenter networks(DCNs), but current mechanisms mostly focus on one of the problems. In this paper, we propose OFMPC, an Open Flow based Multi Path Cooperation framework, to decrease FCT and increase the network throughput. OFMPC partitions the end-to-end transmission paths into two classes, which are low delay paths(LDPs) and high throughput paths(HTPs), respectively. Short flows are assigned to LDPs to avoid long queueing delay, while long flows are assigned to HTPs to guarantee their throughput. Meanwhile, a dynamic scheduling mechanism is presented to improve network efficiency. We evaluate OFMPC in Mininet emulator and a testbed, and the experimental results show that OFMPC can effectively decrease FCT. Besides, OFMPC also increases the throughput up to more than 84% of bisection bandwidth.展开更多
The telecommunications industry has been undergoing tremendous technological changes, and owning to continuous technological advancement, it has maintained sustained prosperity and development. In this paper, the inte...The telecommunications industry has been undergoing tremendous technological changes, and owning to continuous technological advancement, it has maintained sustained prosperity and development. In this paper, the interplay between technology, market and government in telecommunications is discussed briefly, and then we introduce technology and government into the traditional SCP(Structure – Conduct – Performance) paradigm to develop an industry analysis framework called TGM(SCP)(Technology – Government – Market(Structure – Conduct – Performance)). Based on this framework, we present the spiral coevolution model which elaborates on the interaction mechanism of technological innovation with government regulation and market dynamics from the perspective of industry evolution. Our study indicates that the development of the telecommunications industry is the result of the coevolution of technology, government regulation and market forces, and among the three actors, technology is the fundamental driving force. Relative to the "invisible hand"(market) and "visible hand"(government), we conceptualize technology as the "third hand", which fundamentally drives the development of telecommunications industry in coordination with the other two hands. We also provide several policy implications regarding these findings.展开更多
Abstract: In this paper, we propose a mecha- nism for multicast data transmission in IEEE 802.16 mesh networks aimed at increasing the throughput by incorporating mini-slot spatial reuse. The proposed mechanism inclu...Abstract: In this paper, we propose a mecha- nism for multicast data transmission in IEEE 802.16 mesh networks aimed at increasing the throughput by incorporating mini-slot spatial reuse. The proposed mechanism includes two novel algorithms: a source-based multicast tree topology construction algorithm followed by an interference-aware multieast scheduling algorithm. The proposed multicast interfer- ence-aware scheduling algorithm can be ap- plied to both source-based and rendez- vous-based multicast tree topologies. Results of our simulation study show that in compari- son to the mechanism used for the IEEE 802.16's standard, the proposed multicast tree generation algorithm reduces the number of consumed mini-slots by 64% on average. Moreover, using the proposed interfer- ence-aware scheduling algorithm decreases the number of required mini-slots by a further 22% on average. Therefore, the proposed mul- ticast scheduling mechanism shows a higher throughput than the previous approaches and it is more scalable with respect to increasing the number of multicast groups as well as in- creasing the number of members inside each multicast group.展开更多
This paper proposes a hybrid optimization to solve the scheduling of household power consumption for Step and Time-of-Use (TOU) tariff system. The target function is the cost of electricity, and the optimization objec...This paper proposes a hybrid optimization to solve the scheduling of household power consumption for Step and Time-of-Use (TOU) tariff system. The target function is the cost of electricity, and the optimization object is total instantaneous power within a billing period. The control variables are starting moments of each household appliance. The optimization procedure is divided into two stages. Firstly, the prerequisite for minimal cost is calculated through mathematical analysis and generalized function theory. Secondly, the solution is obtained by using a heuristic algorithm in which the result of the first stage is considered to reduce the searching space. And an evaluation methodology is deduced to evaluate the optimization. The computer simulation demonstrates that the proposed approach can reduce the cost of electricity evidently in the sense of probability. The approach shows great value for embedded applications.展开更多
The nucleax mains attachment regions(MARs) and the binding nuclear matrix proteins in the 5’-flalildng cisacting elements of the humanε-globin gene have been examined. Using in vitro DNA-matrix binding assay,it has ...The nucleax mains attachment regions(MARs) and the binding nuclear matrix proteins in the 5’-flalildng cisacting elements of the humanε-globin gene have been examined. Using in vitro DNA-matrix binding assay,it has been shown that the positive stage-specific regulatory element (ε-PREII, -446bp-419bp) upstream of this gene could specifically associate with the nuclear matrix from K562 cells, indicating thatε-PREII mad be an erythroidspecilic facultstive MAR. In gel mobility shift assay and Southwestern blotting assal an eothroid-specific nuclear matrix protein (ε-NMPk) in K562 cells has been revealed to bind to this positive regulatory element (E-PREII). Furthermore, we demonstrated that the silencer (-392hp -177bp) uP8tream of the humanε-globin gene could associate with the nuclear matrices from K562, HEL and Raji cells. In addition, the nucleax matrix proteins prepared from these three cell lines could also bind to this silencer, suggesting that this silencer element linght be a constitutive nuclear mains attachment region (constitutive MAR). Our results demonstrated that the nucleax madrid and nuclear mains proteins lxilght play an important role in the regulation of the human 5-globin gene expression.展开更多
Antisense RNA molecule represents a unique type of DNA transcript that comprises 19-23 nucleotides and is complementary to mRNA. Antisense RNAs play the crucial role in regulating gene expression at multiple levels, s...Antisense RNA molecule represents a unique type of DNA transcript that comprises 19-23 nucleotides and is complementary to mRNA. Antisense RNAs play the crucial role in regulating gene expression at multiple levels, such as at replication, transcription, and translation. In addition, artificial antisense RNAs can effectively regulate the expression of related genes in host cells. With the development of antisense RNA, investigating the functions of antisense RNAs has emerged as a hot research field. This review summarizes our current understanding of antisense RNAs, particularly of the formation of antisense RNAs and their mechanism of regulating the expression of their target genes. In addition, we detail the effects and applications of antisense RNAs in antivirus and anticancer treatments and in regulating the expression of related genes in plants and microorganisms. This review is intended to highlight the key role of antisense RNA in genetic research and guide new investigators to the study of antisense RNAs.展开更多
Endothelial cells(ECs)not only serve as a barrier between blood and extravascular space to modulate the exchange of fluid,macromolecules and cells,but also play a critical role in regulation of vascular homeostasis an...Endothelial cells(ECs)not only serve as a barrier between blood and extravascular space to modulate the exchange of fluid,macromolecules and cells,but also play a critical role in regulation of vascular homeostasis and adaptation under mechanical stimulus via intrinsic mechanotransduction.Recently,with the dissection of microdomains responsible for cellular responsiveness to mechanical stimulus,a lot of mechanosensing molecules(mechanosensors)and pathways have been identified in ECs.In addition,there is growing evidence that endothelial mechanosensors not only serve as key vascular gatekeepers,but also contribute to the pathogenesis of various vascular disorders.This review focuses on recent findings in endothelial mechanosensors in subcellular microdomains and their roles in regulation of physiological and pathological functions under mechanical stress.展开更多
文摘The authors treated 26 cases of dysequillibrium due tocerebellum or brain stem infarction byelectro-acupuncture from Aug 2000 - April 2002. Theresults were quite satisfactory and reported as follows.
基金supported by the State Key Development Program for Basic Research of China under Grant No.2012CB315806the National Natural Science Foundation of China under Grant Nos.61103225 and 61379149+1 种基金Jiangsu Province Natural Science Foundation of China under Grant No.BK20140070Jiangsu Future Networks Innovation Institute Prospective Research Project on Future Networks under Grant No.BY2013095-1-06
文摘Decreasing the flow completion time(FCT) and increasing the throughput are two fundamental targets in datacenter networks(DCNs), but current mechanisms mostly focus on one of the problems. In this paper, we propose OFMPC, an Open Flow based Multi Path Cooperation framework, to decrease FCT and increase the network throughput. OFMPC partitions the end-to-end transmission paths into two classes, which are low delay paths(LDPs) and high throughput paths(HTPs), respectively. Short flows are assigned to LDPs to avoid long queueing delay, while long flows are assigned to HTPs to guarantee their throughput. Meanwhile, a dynamic scheduling mechanism is presented to improve network efficiency. We evaluate OFMPC in Mininet emulator and a testbed, and the experimental results show that OFMPC can effectively decrease FCT. Besides, OFMPC also increases the throughput up to more than 84% of bisection bandwidth.
基金supported by Major Program of the National Social Science Foundation of China under Grant No.15ZDB154National Basic Research Program of China (973 Program) under Grant No. 2012CB315805
文摘The telecommunications industry has been undergoing tremendous technological changes, and owning to continuous technological advancement, it has maintained sustained prosperity and development. In this paper, the interplay between technology, market and government in telecommunications is discussed briefly, and then we introduce technology and government into the traditional SCP(Structure – Conduct – Performance) paradigm to develop an industry analysis framework called TGM(SCP)(Technology – Government – Market(Structure – Conduct – Performance)). Based on this framework, we present the spiral coevolution model which elaborates on the interaction mechanism of technological innovation with government regulation and market dynamics from the perspective of industry evolution. Our study indicates that the development of the telecommunications industry is the result of the coevolution of technology, government regulation and market forces, and among the three actors, technology is the fundamental driving force. Relative to the "invisible hand"(market) and "visible hand"(government), we conceptualize technology as the "third hand", which fundamentally drives the development of telecommunications industry in coordination with the other two hands. We also provide several policy implications regarding these findings.
文摘Abstract: In this paper, we propose a mecha- nism for multicast data transmission in IEEE 802.16 mesh networks aimed at increasing the throughput by incorporating mini-slot spatial reuse. The proposed mechanism includes two novel algorithms: a source-based multicast tree topology construction algorithm followed by an interference-aware multieast scheduling algorithm. The proposed multicast interfer- ence-aware scheduling algorithm can be ap- plied to both source-based and rendez- vous-based multicast tree topologies. Results of our simulation study show that in compari- son to the mechanism used for the IEEE 802.16's standard, the proposed multicast tree generation algorithm reduces the number of consumed mini-slots by 64% on average. Moreover, using the proposed interfer- ence-aware scheduling algorithm decreases the number of required mini-slots by a further 22% on average. Therefore, the proposed mul- ticast scheduling mechanism shows a higher throughput than the previous approaches and it is more scalable with respect to increasing the number of multicast groups as well as in- creasing the number of members inside each multicast group.
文摘This paper proposes a hybrid optimization to solve the scheduling of household power consumption for Step and Time-of-Use (TOU) tariff system. The target function is the cost of electricity, and the optimization object is total instantaneous power within a billing period. The control variables are starting moments of each household appliance. The optimization procedure is divided into two stages. Firstly, the prerequisite for minimal cost is calculated through mathematical analysis and generalized function theory. Secondly, the solution is obtained by using a heuristic algorithm in which the result of the first stage is considered to reduce the searching space. And an evaluation methodology is deduced to evaluate the optimization. The computer simulation demonstrates that the proposed approach can reduce the cost of electricity evidently in the sense of probability. The approach shows great value for embedded applications.
文摘The nucleax mains attachment regions(MARs) and the binding nuclear matrix proteins in the 5’-flalildng cisacting elements of the humanε-globin gene have been examined. Using in vitro DNA-matrix binding assay,it has been shown that the positive stage-specific regulatory element (ε-PREII, -446bp-419bp) upstream of this gene could specifically associate with the nuclear matrix from K562 cells, indicating thatε-PREII mad be an erythroidspecilic facultstive MAR. In gel mobility shift assay and Southwestern blotting assal an eothroid-specific nuclear matrix protein (ε-NMPk) in K562 cells has been revealed to bind to this positive regulatory element (E-PREII). Furthermore, we demonstrated that the silencer (-392hp -177bp) uP8tream of the humanε-globin gene could associate with the nuclear matrices from K562, HEL and Raji cells. In addition, the nucleax matrix proteins prepared from these three cell lines could also bind to this silencer, suggesting that this silencer element linght be a constitutive nuclear mains attachment region (constitutive MAR). Our results demonstrated that the nucleax madrid and nuclear mains proteins lxilght play an important role in the regulation of the human 5-globin gene expression.
基金Project supported by the Natural Science Foundation of Jiangsu Province(No.BK20150149)the China Postdoctoral Science Foundation Grant(No.2016M590410)the Fundamental Research Funds for the Central Universities(No.JUSRP115A19),China
文摘Antisense RNA molecule represents a unique type of DNA transcript that comprises 19-23 nucleotides and is complementary to mRNA. Antisense RNAs play the crucial role in regulating gene expression at multiple levels, such as at replication, transcription, and translation. In addition, artificial antisense RNAs can effectively regulate the expression of related genes in host cells. With the development of antisense RNA, investigating the functions of antisense RNAs has emerged as a hot research field. This review summarizes our current understanding of antisense RNAs, particularly of the formation of antisense RNAs and their mechanism of regulating the expression of their target genes. In addition, we detail the effects and applications of antisense RNAs in antivirus and anticancer treatments and in regulating the expression of related genes in plants and microorganisms. This review is intended to highlight the key role of antisense RNA in genetic research and guide new investigators to the study of antisense RNAs.
基金supported by the National Natural Science Foundation of China(91339111,31221002)National Basic Research Program of China(2012CB945100)to Luo JinCai
文摘Endothelial cells(ECs)not only serve as a barrier between blood and extravascular space to modulate the exchange of fluid,macromolecules and cells,but also play a critical role in regulation of vascular homeostasis and adaptation under mechanical stimulus via intrinsic mechanotransduction.Recently,with the dissection of microdomains responsible for cellular responsiveness to mechanical stimulus,a lot of mechanosensing molecules(mechanosensors)and pathways have been identified in ECs.In addition,there is growing evidence that endothelial mechanosensors not only serve as key vascular gatekeepers,but also contribute to the pathogenesis of various vascular disorders.This review focuses on recent findings in endothelial mechanosensors in subcellular microdomains and their roles in regulation of physiological and pathological functions under mechanical stress.