Soil water dynamics in the dominant lwo soil series (Arinic lixisol) were evaluated at the Federal University of Agriculture, Alabata, Abeokuta, Nigeria. Field capacity, infiltration and water retention characterist...Soil water dynamics in the dominant lwo soil series (Arinic lixisol) were evaluated at the Federal University of Agriculture, Alabata, Abeokuta, Nigeria. Field capacity, infiltration and water retention characteristics were evaluated in situ for a period of 161 d in the dry season for two root zone depths. Results show that the Iwo soil series has a field capacity ranging from 2.6%-5.5% at 0-45 cm and 45-90 cm root zone depths, respectively. The soil is quick draining with high infiltration rate and very poor water retention capacity confirming that the soil will require a short irrigation interval of about 2-3 d since available water for plant growth in predominantly sandy soils ranges between 2%-8%. Based on the foregoing, sprinkler irrigation is best suited for the lwo soil series, it should, however, be noted that the water application rate must be less than the infiltration rate of the soil in order to prevent surface ponding and runoff. A multivariate model relating soil moisture content with soil moisture tension and soil temperature calibrated within the study had very low model accuracy of 56% and 45% for the two root zone depths, respectively, implying the need for further studies.展开更多
文摘Soil water dynamics in the dominant lwo soil series (Arinic lixisol) were evaluated at the Federal University of Agriculture, Alabata, Abeokuta, Nigeria. Field capacity, infiltration and water retention characteristics were evaluated in situ for a period of 161 d in the dry season for two root zone depths. Results show that the Iwo soil series has a field capacity ranging from 2.6%-5.5% at 0-45 cm and 45-90 cm root zone depths, respectively. The soil is quick draining with high infiltration rate and very poor water retention capacity confirming that the soil will require a short irrigation interval of about 2-3 d since available water for plant growth in predominantly sandy soils ranges between 2%-8%. Based on the foregoing, sprinkler irrigation is best suited for the lwo soil series, it should, however, be noted that the water application rate must be less than the infiltration rate of the soil in order to prevent surface ponding and runoff. A multivariate model relating soil moisture content with soil moisture tension and soil temperature calibrated within the study had very low model accuracy of 56% and 45% for the two root zone depths, respectively, implying the need for further studies.