-
题名一种水稻害虫的小目标检测方法研究
- 1
-
-
作者
魏志慧
张聪
成泞伸
陈新波
闫可
-
机构
武汉轻工大学数学与计算机学院
武汉轻工大学电气与电子工程学院
-
出处
《江苏农业科学》
北大核心
2024年第9期232-241,共10页
-
基金
国家自然科学基金面上项目(编号:61272278)
湖北省重大科技专项(编号:2018ABA099)
湖北省教育厅科学研究计划重点项目(编号:D20201601)。
-
文摘
在水稻害虫的防治中,往往会因为田间背景杂乱、叶片与害虫颜色相似、害虫个头较小导致水稻害虫不易被察觉。针对田间水稻害虫检测精度不高的问题,提出一种多尺度均衡级联检测模型(ME-Cascade)。为更好地提取水稻害虫这种小目标的特征,该模型以级联神经网络(Cascade RCNN)为基础,引入多尺度骨干网络结构Res2Net,实现单个残差块中构建类似残差的分层连接。然后在区域生成网络中加入跨通道特征融合层,降低训练过程中背景叶片与目标害虫颜色相似带来的干扰,增强候选区域定位的准确性。并在级联检测器中使用样本均衡化采样,解决目标害虫与背景特征数量差异大带来的正负样本不均衡问题,减少小目标的错检漏检。最后,为避免深层网络在小样本检测中梯度爆炸和过拟合的发生,在梯度下降中使用梯度裁剪技术。将该模型用于公开发表的水稻虫害数据集上,mAP达到了96.9%,比原始Cascade RCNN模型提高了2.7百分点,验证了该模型在真实田间的水稻害虫上具有更好的识别效果。
-
关键词
田间水稻害虫
小目标检测
多尺度骨干网络
跨通道特征融合
均衡采样
梯度裁剪
-
分类号
S435.112
[农业科学—农业昆虫与害虫防治]
TP391.41
[自动化与计算机技术—计算机应用技术]
-