Dummy molecularly imprinted polymers (DMIPs) for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) were produced using three structural analogues as dummy template molecules. The chosen analogues were 4-(a...Dummy molecularly imprinted polymers (DMIPs) for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) were produced using three structural analogues as dummy template molecules. The chosen analogues were 4-(acetymethylamino)-1-(3-pyridyl)-butanol, 4- (methylamino)-1-(3-pyridyl)-1-butanol, and 1-(3-pyridyl)-1,4,-butanediol. The molecular recognition characteristics of the produced polymers were evaluated by X-ray photoelec- tron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). Interactions between NNAL and methacrylic acid should be cooperative hydrogen bonds while the ni- trogen atom of the pyridine ring and the oxygen atom of the nitroso group in NNAL are two of the hydrogen-bond acceptors. It was further demonstrated that DMIP synthesized by 4-(acetymethylamino)-1-(3-pyridyl)-butanol had the best binding performance by XPS and FT-IR. Then dummy molecularly imprinted solid phase extraction (DMISPE) was developed for the determination of the analyte using the hit polymer as the sorbing material. Under optimal conditions, the recovery of NNAL dissolved in standard solution reached 93%. And the investigated polymer exhibited much higher binding of NNAL when nicotine was acted as the competitive molecule. Also the proposed method was applied to the measurement of NNAL spiked in blank urine samples with recoveries ranging from 87.2% to 101.2%.展开更多
Nowadays, extractive distillation is the main technique to produce 1,3-butadiene. This study simulated the 1,3-butadiene production process with DMF extractive distillation by Aspen Plus. The solvent ratio is the most...Nowadays, extractive distillation is the main technique to produce 1,3-butadiene. This study simulated the 1,3-butadiene production process with DMF extractive distillation by Aspen Plus. The solvent ratio is the most important parameter to the extractive distillation process. The article has given out the proper solvent ratios, reflux ratios, distillate ratios, and bottom product ratios of the columns. It also discusses the thermal loads of several columns. The results of simulation are consequently compared with the plant data, which shows good accordance with each other.展开更多
A kinetic model was developed to describe the atom transfer radical polymerization (ATRP) of 2(N,N-dimethylarnino) ethyl methacrylate (DMAEMA). The model was based on a polymerization mechanism, which included the ato...A kinetic model was developed to describe the atom transfer radical polymerization (ATRP) of 2(N,N-dimethylarnino) ethyl methacrylate (DMAEMA). The model was based on a polymerization mechanism, which included the atom transfer equilibrium for primary radical, the propagation of growing polymer radical, and the atom transfer equilibrium for the growing polymer radical. An experiment was carried out to measure the conversion of monomer, the number-average molecular weight of polymer and molecular weight distribution for the ATRP process of DMAEMA. The experimental data were used to correlate the kinetic model and rate constants were obtained. The rate constants of activation and deactivation in the atom transfer equilibrium for primary radical are 1.0 x 10(4) L(.)mol(-1.)s(-1) and 0.04 L(.)mol(-1.)s(-1), respectively. The rate constant of the propagation of growing polymer radical is 8.50 L(.)mol(-1.)s(-1), and the rate constants of activation and deactivation in the atom transfer equilibrium for growing polymer radical are 0.045 L(.)mol(-1.)s(-1) and 1.2 x 10(5) L(.)mol(-1.)s(-1), respectively. The values of the rate constants represent the features of the ATRP process. The kinetic model was used to calculate the ATRP process of DMAEMA. The results show that the calculations agree well with the measurements.展开更多
文摘Dummy molecularly imprinted polymers (DMIPs) for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) were produced using three structural analogues as dummy template molecules. The chosen analogues were 4-(acetymethylamino)-1-(3-pyridyl)-butanol, 4- (methylamino)-1-(3-pyridyl)-1-butanol, and 1-(3-pyridyl)-1,4,-butanediol. The molecular recognition characteristics of the produced polymers were evaluated by X-ray photoelec- tron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). Interactions between NNAL and methacrylic acid should be cooperative hydrogen bonds while the ni- trogen atom of the pyridine ring and the oxygen atom of the nitroso group in NNAL are two of the hydrogen-bond acceptors. It was further demonstrated that DMIP synthesized by 4-(acetymethylamino)-1-(3-pyridyl)-butanol had the best binding performance by XPS and FT-IR. Then dummy molecularly imprinted solid phase extraction (DMISPE) was developed for the determination of the analyte using the hit polymer as the sorbing material. Under optimal conditions, the recovery of NNAL dissolved in standard solution reached 93%. And the investigated polymer exhibited much higher binding of NNAL when nicotine was acted as the competitive molecule. Also the proposed method was applied to the measurement of NNAL spiked in blank urine samples with recoveries ranging from 87.2% to 101.2%.
文摘Nowadays, extractive distillation is the main technique to produce 1,3-butadiene. This study simulated the 1,3-butadiene production process with DMF extractive distillation by Aspen Plus. The solvent ratio is the most important parameter to the extractive distillation process. The article has given out the proper solvent ratios, reflux ratios, distillate ratios, and bottom product ratios of the columns. It also discusses the thermal loads of several columns. The results of simulation are consequently compared with the plant data, which shows good accordance with each other.
文摘A kinetic model was developed to describe the atom transfer radical polymerization (ATRP) of 2(N,N-dimethylarnino) ethyl methacrylate (DMAEMA). The model was based on a polymerization mechanism, which included the atom transfer equilibrium for primary radical, the propagation of growing polymer radical, and the atom transfer equilibrium for the growing polymer radical. An experiment was carried out to measure the conversion of monomer, the number-average molecular weight of polymer and molecular weight distribution for the ATRP process of DMAEMA. The experimental data were used to correlate the kinetic model and rate constants were obtained. The rate constants of activation and deactivation in the atom transfer equilibrium for primary radical are 1.0 x 10(4) L(.)mol(-1.)s(-1) and 0.04 L(.)mol(-1.)s(-1), respectively. The rate constant of the propagation of growing polymer radical is 8.50 L(.)mol(-1.)s(-1), and the rate constants of activation and deactivation in the atom transfer equilibrium for growing polymer radical are 0.045 L(.)mol(-1.)s(-1) and 1.2 x 10(5) L(.)mol(-1.)s(-1), respectively. The values of the rate constants represent the features of the ATRP process. The kinetic model was used to calculate the ATRP process of DMAEMA. The results show that the calculations agree well with the measurements.