Viscose activated carbon fibers (ACFs) were characterized using specific surface area, scanning electron modified with chemical vapor deposition (CVD). The samples were microscopy (SEM), pore size distribution a...Viscose activated carbon fibers (ACFs) were characterized using specific surface area, scanning electron modified with chemical vapor deposition (CVD). The samples were microscopy (SEM), pore size distribution and Fourier transform infrared spectroscopy (FTIR). Batch adsorption experiments were carried out to investigate the adsorption behavior of modified ACFs for methyl orange(MO) from its aqueous solutions. The results show that the adsorption isotherms of MO onto modified ACFs well follows the Langmuir isotherm equation. The adsorption kinetics of MO can be well described by the pseudo second-order kinetic model. The adsorption process involves the intra-particle diffusion, but is not the only rate-controlling step. Thermodynamic parameters including AG, AH and AS were calculated, suggesting that the adsorption of MO onto modified ACFs is a spontaneous, exothermic and physisorption process. FTIR result indicates that the major adsorption mechanism of modified ACFs for MO is hydrogen bond.展开更多
Shape-selective methylation of 2-methylnaphthalene (2-MN) was carried out over NH 4 F and Pt modified HZSM-5 (SiO 2 /Al 2 O 3 = 83) catalysts in a fixed-bed down-flow reactor using methanol as methylating agent and 1,...Shape-selective methylation of 2-methylnaphthalene (2-MN) was carried out over NH 4 F and Pt modified HZSM-5 (SiO 2 /Al 2 O 3 = 83) catalysts in a fixed-bed down-flow reactor using methanol as methylating agent and 1,3,5-trimethylbenzene (1,3,5-TMB) as a solvent. Pt promoted HZSM-5 catalysts showed low concentration of coke-like polycondensed aromatics, NH 4 F modification decreased non-shape-selective acid sites. After Pt and NH 4 F co-modification, both conversion of 2-MN and selectivity to 2,6-DMN were improved. 6%NH 4 F/0.5%Pt/HZSM-5 catalyst exhibited 13.8% of 2-MN conversion with 6.2% of 2,6-DMN yield after 7 h time on stream (TOS), and 2,6-/2,7-DMN ratio of 1.7 after 10 h of TOS.展开更多
基金Project (50802115) supported by the National Natural Science Foundation of ChinaProject (2010FJ4075) supported by Science and Technology Planning Project of Hunan Province, China+1 种基金Project (CDJJ-10010205) supported by the Science Foundation of Changsha University, ChinaProject supported by the Construct Program of the Key Discipline in Hunan Province, China
文摘Viscose activated carbon fibers (ACFs) were characterized using specific surface area, scanning electron modified with chemical vapor deposition (CVD). The samples were microscopy (SEM), pore size distribution and Fourier transform infrared spectroscopy (FTIR). Batch adsorption experiments were carried out to investigate the adsorption behavior of modified ACFs for methyl orange(MO) from its aqueous solutions. The results show that the adsorption isotherms of MO onto modified ACFs well follows the Langmuir isotherm equation. The adsorption kinetics of MO can be well described by the pseudo second-order kinetic model. The adsorption process involves the intra-particle diffusion, but is not the only rate-controlling step. Thermodynamic parameters including AG, AH and AS were calculated, suggesting that the adsorption of MO onto modified ACFs is a spontaneous, exothermic and physisorption process. FTIR result indicates that the major adsorption mechanism of modified ACFs for MO is hydrogen bond.
基金Supported by the Program for New Century Excellent Talents in University (NCET-04-0268)the Expertise-Introduction Project for Disciplinary Innovation of Universities
文摘Shape-selective methylation of 2-methylnaphthalene (2-MN) was carried out over NH 4 F and Pt modified HZSM-5 (SiO 2 /Al 2 O 3 = 83) catalysts in a fixed-bed down-flow reactor using methanol as methylating agent and 1,3,5-trimethylbenzene (1,3,5-TMB) as a solvent. Pt promoted HZSM-5 catalysts showed low concentration of coke-like polycondensed aromatics, NH 4 F modification decreased non-shape-selective acid sites. After Pt and NH 4 F co-modification, both conversion of 2-MN and selectivity to 2,6-DMN were improved. 6%NH 4 F/0.5%Pt/HZSM-5 catalyst exhibited 13.8% of 2-MN conversion with 6.2% of 2,6-DMN yield after 7 h time on stream (TOS), and 2,6-/2,7-DMN ratio of 1.7 after 10 h of TOS.