Acrylonitrile-methyl methacrylate (AN-MMA) copolymer/silica nanocomposites were synthesized by in-situ emulsion polymerization initiated by 2,2'-azobis(2-amidinopropane) dihydrochloride absorbed onto colloidal si...Acrylonitrile-methyl methacrylate (AN-MMA) copolymer/silica nanocomposites were synthesized by in-situ emulsion polymerization initiated by 2,2'-azobis(2-amidinopropane) dihydrochloride absorbed onto colloidal silica particles, and the mesoporous carbon materials were prepared through carbonization of the obtained AN-MMA copolymer/silica nanocomposites, followed by HF etching. Thermogravimetric analysis of AN-MMAcopolymer/silica nanocomposltes snoweO mat me caroon ylelCl or copolymer was slgnuy oecreaseo as Silica parucle incorporated. N2 adsorption-desorption, scan electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the mesoporous carbon materials. Both SEM and展开更多
Wrinkling and buckling of nano-films on the compliant substrate are always induced due to thermal deformation mismatch.This paper proposes effective means to control the surface wrinkling of thin film on the compliant...Wrinkling and buckling of nano-films on the compliant substrate are always induced due to thermal deformation mismatch.This paper proposes effective means to control the surface wrinkling of thin film on the compliant substrate,which exploits the curvatures of the curve cracks designed on the stiff film.The procedures of the method are summarized as:1)curve patterns are fabricated on the surface of PDMS(Polydimethylsiloxane)substrate and then the aluminum film with the thickness of several hundred nano-meters is deposited on the substrate;2)the curve patterns are transferred onto the aluminum film and lead to cracking of the film along the curves.The cracking redistributes the stress in the compressed film on the substrate;3)on the concave side of the curve,the wrinkling of the film surface is suppressed to be identified as shielding effect and on the convex side the wrinkling of the film surface is induced to be identified as inductive effect.The shielding and inductive effects make the dis-ordered wrinkling and buckling controllable.This phenomenon provides a potential application in the fabrication of flexible electronic devices.展开更多
基金Supported by the Program for New Century Excellent Talents in University (NCET-07-0738)
文摘Acrylonitrile-methyl methacrylate (AN-MMA) copolymer/silica nanocomposites were synthesized by in-situ emulsion polymerization initiated by 2,2'-azobis(2-amidinopropane) dihydrochloride absorbed onto colloidal silica particles, and the mesoporous carbon materials were prepared through carbonization of the obtained AN-MMA copolymer/silica nanocomposites, followed by HF etching. Thermogravimetric analysis of AN-MMAcopolymer/silica nanocomposltes snoweO mat me caroon ylelCl or copolymer was slgnuy oecreaseo as Silica parucle incorporated. N2 adsorption-desorption, scan electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the mesoporous carbon materials. Both SEM and
基金supported by the National Basic Research Program of China(Grant Nos.2010CB631005 and 2011CB606105)the National Natural Science Foundation of China(Grant Nos.11232008,91216301,11072125 and 11272175)Tsinghua University Initiative Scientific Research Program
文摘Wrinkling and buckling of nano-films on the compliant substrate are always induced due to thermal deformation mismatch.This paper proposes effective means to control the surface wrinkling of thin film on the compliant substrate,which exploits the curvatures of the curve cracks designed on the stiff film.The procedures of the method are summarized as:1)curve patterns are fabricated on the surface of PDMS(Polydimethylsiloxane)substrate and then the aluminum film with the thickness of several hundred nano-meters is deposited on the substrate;2)the curve patterns are transferred onto the aluminum film and lead to cracking of the film along the curves.The cracking redistributes the stress in the compressed film on the substrate;3)on the concave side of the curve,the wrinkling of the film surface is suppressed to be identified as shielding effect and on the convex side the wrinkling of the film surface is induced to be identified as inductive effect.The shielding and inductive effects make the dis-ordered wrinkling and buckling controllable.This phenomenon provides a potential application in the fabrication of flexible electronic devices.