Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show ...Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show that hydrogen addition advances ignition tim- ing and enhances peak pressure and temperature. A brief analysis of chemical kinetics of methane blending hydrogen is also performed in order to investigate the scope of its appli- cation, and the analysis suggests that OH radical plays an important role in the oxidation. Hydrogen addition increases NOx while decreasing HC and CO emissions. Exhaust gas recir- culation (EGR) also advances ignition timing; however, its effects on emissions are generally the opposite. By adjusting the hydrogen addition and EGR rate, the ignition timing can be regulated with a low emission level. Investigation into zones suggests that NOx is mostly formed in core zones while HC and CO mostly originate in the crevice and the quench layer.展开更多
AIM: To investigate the incidence of bacterial overgrowth in the stomach by using a new endoscopic method in which intragastric hydrogen and methane gases are collected and analyzed. METHODS: Studies were performed ...AIM: To investigate the incidence of bacterial overgrowth in the stomach by using a new endoscopic method in which intragastric hydrogen and methane gases are collected and analyzed. METHODS: Studies were performed in 490 consecutive patients undergoing esophagogastroscopy, At endoscopy, we intubated the stomach without inflation by air, and 20 mL of intragastric gas was collected through the biopsy channel using a 30 mL syringe, Intragastric hydrogen and methane concentrations were immediately measured by gaschromatography, H pylori infection was also determined by serology. RESULTS: Most of intragastric hydrogen and methane levels were less than 15 ppm (parts per million). The median hydrogen and methane values (interquartile range) were 3 (1-8) ppm and 2 (1-5) ppm, respectively. The high hydrogen and methane levels for indication of fermentation were decided if the patient had the values more than 90 percentile range in each sample. When a patient had a high level of hydrogen or methane in one or more samples, the patient was considered to have fermentation. The overall incidence of intragastric fermentation was 15.4% (73/473), Intragastric methane levels were higher in the postoperative group than in other groups. None of the mean hydrogen or methane values was related to Hpylori infection. CONCLUSION: Hydrogen and methane gases are more frequently detected in the stomach than expected, regardless of the presence of abdominal symptoms. Previous gastric surgery influences on the growth of methaneproducing bacteria in the fasting stomach.展开更多
Silicon carbide was prepared from SiCl4-CH4-H2 gaseous precursors by isothermal, isobaric chemical vapor deposition (CVD) at atmospheric pressure and temperatures ranging from 900°C to 1100°C. Kinetic studie...Silicon carbide was prepared from SiCl4-CH4-H2 gaseous precursors by isothermal, isobaric chemical vapor deposition (CVD) at atmospheric pressure and temperatures ranging from 900°C to 1100°C. Kinetic studies showed that carbosilane of SiH2Cl2, SiHCl3 and SiCl2 formed from decomposition of SiCl4 and CH4 contributed to the deposition of hexangular facet and granular pebble structured SiC. An average apparent activation energy of 152 kJ·mol-1 was determined. The overall CVD process was controlled not only by the surface reactions but also by complex gas phase reactions. The as-deposited thin film was characterized using scanning electron microscopy, X-ray diffraction and transmission electron microscopy, these analysis showed that the deposited thin film consisted of pure phase of the β-SiC, the growth morphology of β-SiC differs from hexangular facet to granular pebble struc-tures, which varied with substrate length and CVD temperature.展开更多
Turbulent nonpremixed CH4/H2 flame has been simulated using several typical differential secondmoment turbulence closure (SMTC) models. To clarify the applicability of the various models, the LRR-IP model,JM model, SS...Turbulent nonpremixed CH4/H2 flame has been simulated using several typical differential secondmoment turbulence closure (SMTC) models. To clarify the applicability of the various models, the LRR-IP model,JM model, SSG model as well as two modified LRR-IP models were tested. Some of above-mentioned SMTC models cannot provide the overall satisfactory predictions of this challenging case. It is confirmed again that the standard LRR-IP model considerably overpredict the centerline velocity decay rate, and therefore performs not well. Also it is interesting to observe that the JM model does not perform well in this challenging test case, although it has already been proved successful in other cases. The SSG model produces quite satisfactory prediction and performs equally well or better than the two modified LRR-IP models in the reacting case. It can be concluded that the modified LRR-IP models as well as the SSG model are superior to the other SMTC models in the turbulent nonpremixed CH4/H2 flame.展开更多
The hydrogen production from methane for proton exchange membrane fuel cell (PEMFC) was studied experimentally. The conversion rate of methane under different steam carbon ratios, the effect of the different excess ai...The hydrogen production from methane for proton exchange membrane fuel cell (PEMFC) was studied experimentally. The conversion rate of methane under different steam carbon ratios, the effect of the different excess air ratios on the constituents of the gas produced, the permeability of hydrogen under different pressure differences, and the effect of different system pressure on the reaction enthalpy of hydrogen were obtained. The results lay the basis for the production of hydrogen applicable to PEMFC, moreover, provide a new way for the comprehensive utilization of the coal bed methane.展开更多
The objective of the present study is to characterize the production of hydrogen with a sorptionenhanced steam-methane reaction process using Ca(OH)2 as the CO2 adsorbent. Theoretical equilibrium compositions at diffe...The objective of the present study is to characterize the production of hydrogen with a sorptionenhanced steam-methane reaction process using Ca(OH)2 as the CO2 adsorbent. Theoretical equilibrium compositions at different operation conditions were calculated using an iterative method. It was found that with Ca(OH)2 as the CO2 sorbent, the concentration of CO2 adsorption was reduced in the product stream, that gave rise to higher methane conversion and higher H2 concentration. An experimental setup was built to test the theoretical calculation. The effects of sorbents and the particle size of Ca(OH)2 on the concentration of CO2 and H2 were investigated in detail. Results showed that the reactor packed with catalyst and Ca(OH)2 particles produced H2 concentration of 94%. It was nearly 96% of the theoretical equilibrium limit, much higher than H2 equilibrium concentration of 67.5% without CO2 sorption under the same conditions of 500℃, 0.2 MPa pressure and a steam-to-methane ratio 6. In addition, the residual mole fraction of CO2 was less than 0.001.展开更多
AIM:To analyze small intestinal bacterial overgrowth in school-aged children and the relationship between hydrogen and methane production in breath tests.METHODS:This transversal study included 85 children residing in...AIM:To analyze small intestinal bacterial overgrowth in school-aged children and the relationship between hydrogen and methane production in breath tests.METHODS:This transversal study included 85 children residing in a slum and 43 children from a private school,all aged between 6 and 10 years,in Osasco,Brazil.For characterization of the groups,data regarding the socioeconomic status and basic housing sanitary conditions were collected.Anthropometric data was obtained in children from both groups.All children completed the hydrogen(H 2) and methane(CH 4) breath test in order to assess small intestinal bacterial overgrowth(SIBO).SIBO was diagnosed when there was an increase in H 2 ≥ 20 ppm or CH 4 ≥ 10 ppm with regard to the fasting value until 60 min after lactulose ingestion.RESULTS:Children from the slum group had worse living conditions and lower nutritional indices than children from the private school.SIBO was found in 30.9%(26/84) of the children from the slum group and in 2.4%(1/41) from the private school group(P = 0.0007).Greater hydrogen production in the small intestine was observed in children from the slum group when compared to children from the private school(P = 0.007).A higher concentration of hydrogen in the small intestine(P < 0.001) and in the colon(P < 0.001) was observed among the children from the slum group with SIBO when compared to children from the slum group without SIBO.Methane production was observed in 63.1%(53/84) of the children from the slum group and in 19.5%(8/41) of the children from the private school group(P < 0.0001).Methane production was observed in 38/58(65.5%) of the children without SIBO and in 15/26(57.7%) of the children with SIBO from the slum.Colonic production of hydrogen was lower in methaneproducing children(P = 0.017).CONCLUSION:Children who live in inadequate environmental conditions are at risk of bacterial overgrowth and methane production.Hydrogen is a substrate for methane production in the colon.展开更多
There has been carried out the process of noncatalytic oxidation of natural methane in the presence of hydrogen peroxide at the temperatures 840-880 ℃ what permitted to obtain hydrogen with high yield of hydrogen (...There has been carried out the process of noncatalytic oxidation of natural methane in the presence of hydrogen peroxide at the temperatures 840-880 ℃ what permitted to obtain hydrogen with high yield of hydrogen (74%) with inconsiderable quantity of CO (0.4%) in converted gas. As observed in the experiment, a variation of H2O2 concentration in the aqueous solution and other basic parameters of the process may induce the synthesis of gas with given H2:CO ratio for its further application in methanol or ammonia synthesis. In the latter process low CO concentration is required. Compared with the common high-temperature conversion of natural gas and further carbon oxide conversion on a catalyst, the current process promotes process simplification: the reaction is implemented at relatively low temperature (860-900 ℃ instead of 1400-1600 ℃for existing non-catalytic processes of methane conversion) and an additional unit for catalytic conversion of carbon oxide is excluded (in NH3 production). The mechanism of chemical conjugation in the CH4-H2O2-H2O system was elucidated and the inducing effect of H2O2 decomposition on the desired (secondary) reaction was quantitavely estimated. An adequate kinetic model was formulated on the basis of the proposed free-radical scheme.展开更多
One of the main challenges of biogas and syngas use as fuel in hybrid solid oxide fuel cell (SOFC) cycles is the variable nature of their composition, which may cause significant changes in plant performance. On the...One of the main challenges of biogas and syngas use as fuel in hybrid solid oxide fuel cell (SOFC) cycles is the variable nature of their composition, which may cause significant changes in plant performance. On the other hand, hydrogen is one of the main components in some types of gasified biomass and syngas. Therefore, it is vital to investigate the influences of hydrogen fraction in inlet fuel on the cycle performance. In this work, a steady-state simulation of a hybrid tubular SOFC-gas turbine (GT) cycle is first presented with two configurations: system with and without anode exhaust recirculation. Then, the results of the model when fueled by syngas, biofuel, and gasified biomass are analyzed, and significant dependency of system operational parameters on the inlet fuel composition are investigated. The analysis of impacts of hydrogen concentration in the inlet fuel on the performance of a hybrid tubular SOFC and gas turbine cycle was carried out. The simulation results were considered when the system was fueled by pure methane as a reference case. Then, the performance of the hybrid SOFC-GT system when methane was partially replaced by H2 from a concentration of 0% to 95% with an increment of 5% at each step was investigated. The system performance was monitored by investigating parameters like temperature and flow rate of streams in different locations of the cycle; SOFC and system thermal efficiency; SOFC, GT, and cycle net and specific work; air to fuel ratio; as well as air and fuel mass flow rate. The results of the sensitivity analysis demonstrate that hydrogen concentration has significant effects on the system operational parameters, such as efficiency and specific work.展开更多
With the aim of reducing the cost of developing internal combustion engines,while at the same time investigating different geometries,layouts and fuels,3D-CFD-CHT simulations represent an indispensable part for the de...With the aim of reducing the cost of developing internal combustion engines,while at the same time investigating different geometries,layouts and fuels,3D-CFD-CHT simulations represent an indispensable part for the development of new technologies.These tools are increasingly used by manufacturers,as a screening process before building the first prototype.This paper presents an innovative methodology for virtual engine development.The 3D-CFD tool QuickSim,developed at FKFS,allows both a significant reduction in computation time and an extension of the simulated domain for complete engine systems.This is possible thanks to a combination of coarse meshes and self-developed internal combustion engine models,which simultaneously ensure high predictability.The present work demonstrates the capabilities of this innovative methodology for the design and optimization of different engines and fuels with the goal of achieving the highest possible combustion efficiencies and pollutant reductions.The analysis focuses on the influence of different fuels such as hydrogen,methanol,synthetic gasolines and methane on different engine geometries,in combination with suitable injection and ignition systems,including passive and active pre-chambers.Lean operations as well as knock reduction are discussed,particularly for methane and hydrogen injection.Finally,it is shown how depending on the chosen fuel,an appropriate ad-hoc engine layout can be designed to increase the indicated efficiency of the respective engines.展开更多
基金This work was supported by the Natural Science Foundation of Anhui Province (No.090412030).
文摘Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show that hydrogen addition advances ignition tim- ing and enhances peak pressure and temperature. A brief analysis of chemical kinetics of methane blending hydrogen is also performed in order to investigate the scope of its appli- cation, and the analysis suggests that OH radical plays an important role in the oxidation. Hydrogen addition increases NOx while decreasing HC and CO emissions. Exhaust gas recir- culation (EGR) also advances ignition timing; however, its effects on emissions are generally the opposite. By adjusting the hydrogen addition and EGR rate, the ignition timing can be regulated with a low emission level. Investigation into zones suggests that NOx is mostly formed in core zones while HC and CO mostly originate in the crevice and the quench layer.
文摘AIM: To investigate the incidence of bacterial overgrowth in the stomach by using a new endoscopic method in which intragastric hydrogen and methane gases are collected and analyzed. METHODS: Studies were performed in 490 consecutive patients undergoing esophagogastroscopy, At endoscopy, we intubated the stomach without inflation by air, and 20 mL of intragastric gas was collected through the biopsy channel using a 30 mL syringe, Intragastric hydrogen and methane concentrations were immediately measured by gaschromatography, H pylori infection was also determined by serology. RESULTS: Most of intragastric hydrogen and methane levels were less than 15 ppm (parts per million). The median hydrogen and methane values (interquartile range) were 3 (1-8) ppm and 2 (1-5) ppm, respectively. The high hydrogen and methane levels for indication of fermentation were decided if the patient had the values more than 90 percentile range in each sample. When a patient had a high level of hydrogen or methane in one or more samples, the patient was considered to have fermentation. The overall incidence of intragastric fermentation was 15.4% (73/473), Intragastric methane levels were higher in the postoperative group than in other groups. None of the mean hydrogen or methane values was related to Hpylori infection. CONCLUSION: Hydrogen and methane gases are more frequently detected in the stomach than expected, regardless of the presence of abdominal symptoms. Previous gastric surgery influences on the growth of methaneproducing bacteria in the fasting stomach.
基金Supported by the One Hundred Talents Program of Chinese Academy of Sciences
文摘Silicon carbide was prepared from SiCl4-CH4-H2 gaseous precursors by isothermal, isobaric chemical vapor deposition (CVD) at atmospheric pressure and temperatures ranging from 900°C to 1100°C. Kinetic studies showed that carbosilane of SiH2Cl2, SiHCl3 and SiCl2 formed from decomposition of SiCl4 and CH4 contributed to the deposition of hexangular facet and granular pebble structured SiC. An average apparent activation energy of 152 kJ·mol-1 was determined. The overall CVD process was controlled not only by the surface reactions but also by complex gas phase reactions. The as-deposited thin film was characterized using scanning electron microscopy, X-ray diffraction and transmission electron microscopy, these analysis showed that the deposited thin film consisted of pure phase of the β-SiC, the growth morphology of β-SiC differs from hexangular facet to granular pebble struc-tures, which varied with substrate length and CVD temperature.
文摘Turbulent nonpremixed CH4/H2 flame has been simulated using several typical differential secondmoment turbulence closure (SMTC) models. To clarify the applicability of the various models, the LRR-IP model,JM model, SSG model as well as two modified LRR-IP models were tested. Some of above-mentioned SMTC models cannot provide the overall satisfactory predictions of this challenging case. It is confirmed again that the standard LRR-IP model considerably overpredict the centerline velocity decay rate, and therefore performs not well. Also it is interesting to observe that the JM model does not perform well in this challenging test case, although it has already been proved successful in other cases. The SSG model produces quite satisfactory prediction and performs equally well or better than the two modified LRR-IP models in the reacting case. It can be concluded that the modified LRR-IP models as well as the SSG model are superior to the other SMTC models in the turbulent nonpremixed CH4/H2 flame.
文摘The hydrogen production from methane for proton exchange membrane fuel cell (PEMFC) was studied experimentally. The conversion rate of methane under different steam carbon ratios, the effect of the different excess air ratios on the constituents of the gas produced, the permeability of hydrogen under different pressure differences, and the effect of different system pressure on the reaction enthalpy of hydrogen were obtained. The results lay the basis for the production of hydrogen applicable to PEMFC, moreover, provide a new way for the comprehensive utilization of the coal bed methane.
文摘The objective of the present study is to characterize the production of hydrogen with a sorptionenhanced steam-methane reaction process using Ca(OH)2 as the CO2 adsorbent. Theoretical equilibrium compositions at different operation conditions were calculated using an iterative method. It was found that with Ca(OH)2 as the CO2 sorbent, the concentration of CO2 adsorption was reduced in the product stream, that gave rise to higher methane conversion and higher H2 concentration. An experimental setup was built to test the theoretical calculation. The effects of sorbents and the particle size of Ca(OH)2 on the concentration of CO2 and H2 were investigated in detail. Results showed that the reactor packed with catalyst and Ca(OH)2 particles produced H2 concentration of 94%. It was nearly 96% of the theoretical equilibrium limit, much higher than H2 equilibrium concentration of 67.5% without CO2 sorption under the same conditions of 500℃, 0.2 MPa pressure and a steam-to-methane ratio 6. In addition, the residual mole fraction of CO2 was less than 0.001.
基金Supported by Coordination for the Improvement of Higher Education Personnel (CAPES) and Food and Nutrition Fund Municipal Health Fund of Osasco,Sao Paulo,Brazil
文摘AIM:To analyze small intestinal bacterial overgrowth in school-aged children and the relationship between hydrogen and methane production in breath tests.METHODS:This transversal study included 85 children residing in a slum and 43 children from a private school,all aged between 6 and 10 years,in Osasco,Brazil.For characterization of the groups,data regarding the socioeconomic status and basic housing sanitary conditions were collected.Anthropometric data was obtained in children from both groups.All children completed the hydrogen(H 2) and methane(CH 4) breath test in order to assess small intestinal bacterial overgrowth(SIBO).SIBO was diagnosed when there was an increase in H 2 ≥ 20 ppm or CH 4 ≥ 10 ppm with regard to the fasting value until 60 min after lactulose ingestion.RESULTS:Children from the slum group had worse living conditions and lower nutritional indices than children from the private school.SIBO was found in 30.9%(26/84) of the children from the slum group and in 2.4%(1/41) from the private school group(P = 0.0007).Greater hydrogen production in the small intestine was observed in children from the slum group when compared to children from the private school(P = 0.007).A higher concentration of hydrogen in the small intestine(P < 0.001) and in the colon(P < 0.001) was observed among the children from the slum group with SIBO when compared to children from the slum group without SIBO.Methane production was observed in 63.1%(53/84) of the children from the slum group and in 19.5%(8/41) of the children from the private school group(P < 0.0001).Methane production was observed in 38/58(65.5%) of the children without SIBO and in 15/26(57.7%) of the children with SIBO from the slum.Colonic production of hydrogen was lower in methaneproducing children(P = 0.017).CONCLUSION:Children who live in inadequate environmental conditions are at risk of bacterial overgrowth and methane production.Hydrogen is a substrate for methane production in the colon.
文摘There has been carried out the process of noncatalytic oxidation of natural methane in the presence of hydrogen peroxide at the temperatures 840-880 ℃ what permitted to obtain hydrogen with high yield of hydrogen (74%) with inconsiderable quantity of CO (0.4%) in converted gas. As observed in the experiment, a variation of H2O2 concentration in the aqueous solution and other basic parameters of the process may induce the synthesis of gas with given H2:CO ratio for its further application in methanol or ammonia synthesis. In the latter process low CO concentration is required. Compared with the common high-temperature conversion of natural gas and further carbon oxide conversion on a catalyst, the current process promotes process simplification: the reaction is implemented at relatively low temperature (860-900 ℃ instead of 1400-1600 ℃for existing non-catalytic processes of methane conversion) and an additional unit for catalytic conversion of carbon oxide is excluded (in NH3 production). The mechanism of chemical conjugation in the CH4-H2O2-H2O system was elucidated and the inducing effect of H2O2 decomposition on the desired (secondary) reaction was quantitavely estimated. An adequate kinetic model was formulated on the basis of the proposed free-radical scheme.
文摘One of the main challenges of biogas and syngas use as fuel in hybrid solid oxide fuel cell (SOFC) cycles is the variable nature of their composition, which may cause significant changes in plant performance. On the other hand, hydrogen is one of the main components in some types of gasified biomass and syngas. Therefore, it is vital to investigate the influences of hydrogen fraction in inlet fuel on the cycle performance. In this work, a steady-state simulation of a hybrid tubular SOFC-gas turbine (GT) cycle is first presented with two configurations: system with and without anode exhaust recirculation. Then, the results of the model when fueled by syngas, biofuel, and gasified biomass are analyzed, and significant dependency of system operational parameters on the inlet fuel composition are investigated. The analysis of impacts of hydrogen concentration in the inlet fuel on the performance of a hybrid tubular SOFC and gas turbine cycle was carried out. The simulation results were considered when the system was fueled by pure methane as a reference case. Then, the performance of the hybrid SOFC-GT system when methane was partially replaced by H2 from a concentration of 0% to 95% with an increment of 5% at each step was investigated. The system performance was monitored by investigating parameters like temperature and flow rate of streams in different locations of the cycle; SOFC and system thermal efficiency; SOFC, GT, and cycle net and specific work; air to fuel ratio; as well as air and fuel mass flow rate. The results of the sensitivity analysis demonstrate that hydrogen concentration has significant effects on the system operational parameters, such as efficiency and specific work.
文摘With the aim of reducing the cost of developing internal combustion engines,while at the same time investigating different geometries,layouts and fuels,3D-CFD-CHT simulations represent an indispensable part for the development of new technologies.These tools are increasingly used by manufacturers,as a screening process before building the first prototype.This paper presents an innovative methodology for virtual engine development.The 3D-CFD tool QuickSim,developed at FKFS,allows both a significant reduction in computation time and an extension of the simulated domain for complete engine systems.This is possible thanks to a combination of coarse meshes and self-developed internal combustion engine models,which simultaneously ensure high predictability.The present work demonstrates the capabilities of this innovative methodology for the design and optimization of different engines and fuels with the goal of achieving the highest possible combustion efficiencies and pollutant reductions.The analysis focuses on the influence of different fuels such as hydrogen,methanol,synthetic gasolines and methane on different engine geometries,in combination with suitable injection and ignition systems,including passive and active pre-chambers.Lean operations as well as knock reduction are discussed,particularly for methane and hydrogen injection.Finally,it is shown how depending on the chosen fuel,an appropriate ad-hoc engine layout can be designed to increase the indicated efficiency of the respective engines.