采用草酸盐凝胶共沉淀法制备了系列Ni Ce O复合氧化物催化剂 ,考察了制备方法及催化剂组成对其催化甲烷燃烧性能的影响 .结果表明 ,草酸盐凝胶共沉淀法制备的Ni Ce O催化剂上甲烷的催化燃烧活性明显高于常规方法制备的Ni Ce O催化剂 ;Ni...采用草酸盐凝胶共沉淀法制备了系列Ni Ce O复合氧化物催化剂 ,考察了制备方法及催化剂组成对其催化甲烷燃烧性能的影响 .结果表明 ,草酸盐凝胶共沉淀法制备的Ni Ce O催化剂上甲烷的催化燃烧活性明显高于常规方法制备的Ni Ce O催化剂 ;Ni Ce O催化剂的组成显著影响其催化性能 .当镍 /铈比值为 4时 ,在 4 0 6℃时即可使 5 0 %甲烷转化 .Ni Ce O复合氧化物中NiO的晶格微应变是影响其催化甲烷燃烧性能的重要因素 .展开更多
Proton-hole mixed conductor, SrCeo.95Yb0.05O3-α(SCYb), has the potential to be used as a membrane for dehydrogenation reactions such as methane coupling due to its high C2-selectivity and its simplicity for fabricati...Proton-hole mixed conductor, SrCeo.95Yb0.05O3-α(SCYb), has the potential to be used as a membrane for dehydrogenation reactions such as methane coupling due to its high C2-selectivity and its simplicity for fabricating reactor systems. In addition, the mixed conducting membrane in the hollow fibre geometry is capable of providing high surface area per unit volume. In this study, mechanism of methane coupling reaction on the SCYb membrane was proposed and the kinetic parameters were obtained by regression of experimental data. A mathematical model describing the methane coupling in the SCYb hollow fibre membrane reactor was also developed. With this mathematical model, various operating conditions such as the operation mode, operation pressure and feed concentrations affecting performance of the reactor were investigated. The simulation results show that the cocurrent flow in the reactor exhibits higher conversion of methane and higher yield of ethylene compared to the countercurrent flow. In order to achieve the highest C2 yield, especially of ethylene, pure methane should be used as feed and the operating pressure be 300 kPa. Air can be used as the source of oxygen for the reaction and its optimum feed velocity is twice of the methane feed velocity. The air pressure in the lumen side should be kept the same as or slightly lower than the pressure of shell side.展开更多
Phase equilibrium conditions of gas hydrate in several systems were measured by the step-heating method using the cylindrical transparent sapphire cell device.The experimental data for pure CH4 or CO2+deionized water ...Phase equilibrium conditions of gas hydrate in several systems were measured by the step-heating method using the cylindrical transparent sapphire cell device.The experimental data for pure CH4 or CO2+deionized water systems showed good agreement with those in the literatures.This kind of method was then applied to CH4/CO2+sodium dodecyl sulfate(SDS)aqueous solution,CH4/CO2+SDS aqueous solution+silica sand,and(CH4+C2H6+C3H8)gas mixture+SDS aqueous solution systems,where SDS was added to increase the hydrate formation rate without evident influence on the equilibrium conditions.The feasibility and reliability of the step-heating method,especially for porous media systems and gas mixtures systems were determined.The experimental data for CO2+silica sand data shows that the equilibrium pressure will change significantly when the particle size of silica sand is less than 96μm.The formation equilibrium pressure was also measured by the reformation of hydrate.展开更多
TiO_2 modified Al_2O_3 binary oxide was prepared by a wet-impregnation method and used as the support for ruthenium catalyst. The catalytic performance of Ru/TiO_2–Al_2O_3catalyst in CO_2 methanation reaction was inv...TiO_2 modified Al_2O_3 binary oxide was prepared by a wet-impregnation method and used as the support for ruthenium catalyst. The catalytic performance of Ru/TiO_2–Al_2O_3catalyst in CO_2 methanation reaction was investigated. Compared with Ru/Al_2O_3 catalyst, the Ru/TiO_2–Al_2O_3catalytic system exhibited a much higher activity in CO_2 methanation reaction. The reaction rate over Ru/TiO_2–Al_2O_3 was 0.59 mol CO_2·(g Ru)1·h-1, 3.1 times higher than that on Ru/Al_2O_3[0.19 mol CO_2·(gRu)-1·h-1]. The effect of TiO_2 content and TiO_2–Al_2O_3calcination temperature on catalytic performance was addressed. The corresponding structures of each catalyst were characterized by means of H_2-TPR, XRD, and TEM. Results indicated that the averaged particle size of the Ru on TiO_2–Al_2O_3support is 2.8 nm, smaller than that on Al_2O_3 support of 4.3 nm. Therefore, we conclude that the improved activity over Ru/TiO_2–Al_2O_3catalyst is originated from the smaller particle size of ruthenium resulting from a strong interaction between Ru and the rutile-TiO_2 support, which hindered the aggregation of Ru nanoparticles.展开更多
Spinel oxides containing Co and Ni are a promising substitute as a noble metal catalyst for methane combustion.Achieving a complete oxidation of methane under 400°C remains challenging,andhydrothermal 60 h NiClit...Spinel oxides containing Co and Ni are a promising substitute as a noble metal catalyst for methane combustion.Achieving a complete oxidation of methane under 400°C remains challenging,andhydrothermal 60 h NiClittle impact on activity,especially at high space velocities due to the long hydrothermal time with less absorbed oxygen species and crystal defects.Overall,these results help clarify methane activa-tion mechanisms and aid the development of more efficient low-cost catalysts.展开更多
A modified solution-diffusion model was established based on Flory-Huggins thermodynamic theory and Fujita's free volume theory. This model was used for description of the mass transfer of removal benzene from dil...A modified solution-diffusion model was established based on Flory-Huggins thermodynamic theory and Fujita's free volume theory. This model was used for description of the mass transfer of removal benzene from dilute aqueous solutions through polydimethylsiloxane (PDMS) membranes. The effect of component concentration on the interaction parameter between components, that of the polymer membrane on the selectivity to benzene, and that of feed concentration and temperature on the permeation flux and separation factor of benzene/water through PDMS membranes were investigated. Calculated pervaporation fluxes of benzene and water were compared with the experimental results and were in good agreement with the experimental data.展开更多
The solid solution (CeZr)02 catalyst was synthesized, and it was modified with metal oxides by incipient impreg- nation. Morphology and structure were characterized by X-ray diffraction, transmission electron micros...The solid solution (CeZr)02 catalyst was synthesized, and it was modified with metal oxides by incipient impreg- nation. Morphology and structure were characterized by X-ray diffraction, transmission electron microscope, ni- trogen ad/desorption and H2-temperature program reduction techniques. The catalytic properties of methane oxidation were also investigated. The results showed that solid solution possessed a mesoporous structure and exhibited excellent catalytic performance. The activity of solid solution was improved effectively by nickel dop- ing, and the optimal loading is 15 wt%. The stability of (CeZr)02 and modified (CeZr)02 indicated that the struc- ture of pristine solid solution played a key role in promoting molecules diffusion and spatial confining oxide particle sintering.展开更多
Mn_2O_3-Na_2WO_4/SiO_2 is considered as the most promising catalyst for the oxidative coupling of methane(OCM) process; however, it only has a better catalytic performance over 800 °C. To improve its low-temper...Mn_2O_3-Na_2WO_4/SiO_2 is considered as the most promising catalyst for the oxidative coupling of methane(OCM) process; however, it only has a better catalytic performance over 800 °C. To improve its low-temperature performance, an attempt has been made to modify the Mn_2O_3-Na_2WO_4/SiO_2 catalyst using TiO_2, MgO, Ga_2O_3, and ZrO_2. Among the synthesized catalysts, the TiO_2-modified Mn_2O_3-Na_2WO_4/SiO_2 catalyst shows markedly improved low-temperature OCM performance,achieving a high CH_4 conversion of ~23% and a good C_2-C_3 selectivity of ~73% at 700 °C(the catalyst bed temperature), along with promising stability for at least 300 h without signs of deactivation.In comparison with the unmodified Mn_2O_3-Na_2WO_4/SiO_2 catalyst, the TiO_2 modification results in significant improvement in the low-temperature activity/selectivity, whereas the MgO modification has almost no impact and the Ga_2O_3 and ZrO_2 modifications have a negative effect. The X-ray diffraction(XRD) and Raman results reveal that the formation of a MnTiO_3 phase and a MnTiO_3-dominated catalyst surface is crucial for the improvement of the low-temperature activity/selectivity in the OCM process.展开更多
This work addressed the multi-objective optimization of a biogas production system considering both environmental and economic criteria. A mixed integer non-linear programming(MINLP) model was established and solved w...This work addressed the multi-objective optimization of a biogas production system considering both environmental and economic criteria. A mixed integer non-linear programming(MINLP) model was established and solved with non-dominated sorting genetic algorithm Ⅱ, from which the Pareto fronts, the optimal technology combinations and operation conditions were obtained and analyzed. It's found that the system is feasible in both environmental and economic considerations after optimization. The most expensive processing section is decarbonization; the most expensive equipment is anaerobic digester; the most power-consuming processing section is digestion, followed by decarbonization and waste management. The positive green degree value on the process is attributed to processing section of digestion and waste management. 3:1 chicken feces and corn straw, solar energy, pressure swing adsorption and 3:1 chicken feces and rice straw, solar energy, pressure swing adsorption are turned out to be two robust technology combinations under different prices of methane and electricity by sensitivity analysis. The optimization results provide support for optimal design and operation of biogas production system considering environmental and economic objectives.展开更多
In this paper a system combining a diesel reformer using catalytic partial oxidation (CPOX) with the Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Unit (APU) applications is modeled with respect to the coolin...In this paper a system combining a diesel reformer using catalytic partial oxidation (CPOX) with the Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Unit (APU) applications is modeled with respect to the cooling effect provided by internal reforming of methane in anode gas channel. A model mixture consisting of 80% n-hexadecane and 20%..!-methylnaphthalin is used to simulate the commercial diesel. The modelling consists of several steps. First, equilibrium gas composition at the exit of CPOX reformer is modelled in terms oxygen to car- bon (O/C) ratio, fuel utilization ratio and anode gas recirculation. Second, product composition, especially methane content, is determined for the me.th.an, ation process at the operating temperatures ra:ng!ng from 500 ℃to 520 ℃.Finally, the cooling power provided by internal reforming of methane in SOFC fuel channel is calculated for two concepts to increase the methane content of the diesel reformate. The results show that the first concept, operating the diesel reformer at low O/C ratio and/or, recirculation rat!o, is not realizable due to high probability of coke formation, whereas the second concept, combining a methanation process with CPOX, can provide a significant cool- ing effect in addition to the conventional c?oling concept which needs higher levels of excess air.展开更多
Methane-rich fluids were recognized to be hosted in the reservoir volcanic rocks as primary inclusions. Samples were collected from core-drillings of volcanic gas reservoirs with reversed δ13C of alkane in the Xujiaw...Methane-rich fluids were recognized to be hosted in the reservoir volcanic rocks as primary inclusions. Samples were collected from core-drillings of volcanic gas reservoirs with reversed δ13C of alkane in the Xujiaweizi depression of the Songliao Basin. The volcanic rocks are rhyolite dominant being enriched in the more incompatible elements like Cs, Rb, Ba, Th, U and Th with relative high LREE, depleted HREE and negative anomalies of Ti and Nb, suggesting a melt involving both in mantle source and crustal assimilation. Primary fluids hosted in the volcanic rocks should have the same provenance with the magma. The authors concluded that the enclosed CH4 in the volcanics are mantle/magma-derived alkane and the reversed δ13C of alkane in the corresponding gas reservoirs is partly resulted from mixture between biogenic and abiogenic gases.展开更多
A detailed three-dimensional mechanistic model of a large-scale solid oxide fuel cell(SOFC) unit running on partially pre-reformed methane is developed. The model considers the coupling effects of chemical and electro...A detailed three-dimensional mechanistic model of a large-scale solid oxide fuel cell(SOFC) unit running on partially pre-reformed methane is developed. The model considers the coupling effects of chemical and electrochemical reactions, mass transport, momentum and heat transfer in the SOFC unit. After model validation, parametric simulations are conducted to investigate how the methane pre-reforming ratio affects the transport and electrochemistry of the SOFC unit. It is found that the methane steam reforming reaction has a "smoothing effect", which can achieve more uniform distributions of gas compositions, current density and temperature among the cell plane. In the case of 1500 W/m^2 power density output, adding 20% methane absorbs 50% of internal heat production inside the cell, reduces the maximum temperature difference inside the cell from 70 K to 22 K and reduces the cathode air supply by 75%, compared to the condition of completely pre-reforming of methane. Under specific operating conditions, the pre-reforming ratio of methane has an optimal range for obtaining a good temperature distribution and good cell performance.展开更多
基金Supported by the National Natural Science Foundation of China(No.20076025).
文摘Proton-hole mixed conductor, SrCeo.95Yb0.05O3-α(SCYb), has the potential to be used as a membrane for dehydrogenation reactions such as methane coupling due to its high C2-selectivity and its simplicity for fabricating reactor systems. In addition, the mixed conducting membrane in the hollow fibre geometry is capable of providing high surface area per unit volume. In this study, mechanism of methane coupling reaction on the SCYb membrane was proposed and the kinetic parameters were obtained by regression of experimental data. A mathematical model describing the methane coupling in the SCYb hollow fibre membrane reactor was also developed. With this mathematical model, various operating conditions such as the operation mode, operation pressure and feed concentrations affecting performance of the reactor were investigated. The simulation results show that the cocurrent flow in the reactor exhibits higher conversion of methane and higher yield of ethylene compared to the countercurrent flow. In order to achieve the highest C2 yield, especially of ethylene, pure methane should be used as feed and the operating pressure be 300 kPa. Air can be used as the source of oxygen for the reaction and its optimum feed velocity is twice of the methane feed velocity. The air pressure in the lumen side should be kept the same as or slightly lower than the pressure of shell side.
基金Supported by the National Natural Science Foundation of China (20676145, U0633003), the National Basic Research Program of China (2009CB219504) and the Program for New Century Excellent Talents in University of the State Ministry of Education.
文摘Phase equilibrium conditions of gas hydrate in several systems were measured by the step-heating method using the cylindrical transparent sapphire cell device.The experimental data for pure CH4 or CO2+deionized water systems showed good agreement with those in the literatures.This kind of method was then applied to CH4/CO2+sodium dodecyl sulfate(SDS)aqueous solution,CH4/CO2+SDS aqueous solution+silica sand,and(CH4+C2H6+C3H8)gas mixture+SDS aqueous solution systems,where SDS was added to increase the hydrate formation rate without evident influence on the equilibrium conditions.The feasibility and reliability of the step-heating method,especially for porous media systems and gas mixtures systems were determined.The experimental data for CO2+silica sand data shows that the equilibrium pressure will change significantly when the particle size of silica sand is less than 96μm.The formation equilibrium pressure was also measured by the reformation of hydrate.
基金Supported by the National Natural Science Foundation of China(211031735127108721476226 and 51471076)DICP Fundamental Research Program for Clean Energy(DICPM201307)
文摘TiO_2 modified Al_2O_3 binary oxide was prepared by a wet-impregnation method and used as the support for ruthenium catalyst. The catalytic performance of Ru/TiO_2–Al_2O_3catalyst in CO_2 methanation reaction was investigated. Compared with Ru/Al_2O_3 catalyst, the Ru/TiO_2–Al_2O_3catalytic system exhibited a much higher activity in CO_2 methanation reaction. The reaction rate over Ru/TiO_2–Al_2O_3 was 0.59 mol CO_2·(g Ru)1·h-1, 3.1 times higher than that on Ru/Al_2O_3[0.19 mol CO_2·(gRu)-1·h-1]. The effect of TiO_2 content and TiO_2–Al_2O_3calcination temperature on catalytic performance was addressed. The corresponding structures of each catalyst were characterized by means of H_2-TPR, XRD, and TEM. Results indicated that the averaged particle size of the Ru on TiO_2–Al_2O_3support is 2.8 nm, smaller than that on Al_2O_3 support of 4.3 nm. Therefore, we conclude that the improved activity over Ru/TiO_2–Al_2O_3catalyst is originated from the smaller particle size of ruthenium resulting from a strong interaction between Ru and the rutile-TiO_2 support, which hindered the aggregation of Ru nanoparticles.
基金supported by the National Key Research and Development Program of China (2016YFC0204301)~~
文摘Spinel oxides containing Co and Ni are a promising substitute as a noble metal catalyst for methane combustion.Achieving a complete oxidation of methane under 400°C remains challenging,andhydrothermal 60 h NiClittle impact on activity,especially at high space velocities due to the long hydrothermal time with less absorbed oxygen species and crystal defects.Overall,these results help clarify methane activa-tion mechanisms and aid the development of more efficient low-cost catalysts.
文摘A modified solution-diffusion model was established based on Flory-Huggins thermodynamic theory and Fujita's free volume theory. This model was used for description of the mass transfer of removal benzene from dilute aqueous solutions through polydimethylsiloxane (PDMS) membranes. The effect of component concentration on the interaction parameter between components, that of the polymer membrane on the selectivity to benzene, and that of feed concentration and temperature on the permeation flux and separation factor of benzene/water through PDMS membranes were investigated. Calculated pervaporation fluxes of benzene and water were compared with the experimental results and were in good agreement with the experimental data.
基金Supported by the National Natural Science Foundation of China(21136007 and51572185)the Natural Science Foundation of Shanxi Province(2014011016-4)the Coal-Based Key Scientific and Technological Project of Shanxi Province(MQ2014-10)
文摘The solid solution (CeZr)02 catalyst was synthesized, and it was modified with metal oxides by incipient impreg- nation. Morphology and structure were characterized by X-ray diffraction, transmission electron microscope, ni- trogen ad/desorption and H2-temperature program reduction techniques. The catalytic properties of methane oxidation were also investigated. The results showed that solid solution possessed a mesoporous structure and exhibited excellent catalytic performance. The activity of solid solution was improved effectively by nickel dop- ing, and the optimal loading is 15 wt%. The stability of (CeZr)02 and modified (CeZr)02 indicated that the struc- ture of pristine solid solution played a key role in promoting molecules diffusion and spatial confining oxide particle sintering.
文摘Mn_2O_3-Na_2WO_4/SiO_2 is considered as the most promising catalyst for the oxidative coupling of methane(OCM) process; however, it only has a better catalytic performance over 800 °C. To improve its low-temperature performance, an attempt has been made to modify the Mn_2O_3-Na_2WO_4/SiO_2 catalyst using TiO_2, MgO, Ga_2O_3, and ZrO_2. Among the synthesized catalysts, the TiO_2-modified Mn_2O_3-Na_2WO_4/SiO_2 catalyst shows markedly improved low-temperature OCM performance,achieving a high CH_4 conversion of ~23% and a good C_2-C_3 selectivity of ~73% at 700 °C(the catalyst bed temperature), along with promising stability for at least 300 h without signs of deactivation.In comparison with the unmodified Mn_2O_3-Na_2WO_4/SiO_2 catalyst, the TiO_2 modification results in significant improvement in the low-temperature activity/selectivity, whereas the MgO modification has almost no impact and the Ga_2O_3 and ZrO_2 modifications have a negative effect. The X-ray diffraction(XRD) and Raman results reveal that the formation of a MnTiO_3 phase and a MnTiO_3-dominated catalyst surface is crucial for the improvement of the low-temperature activity/selectivity in the OCM process.
基金Supported by the National Natural Science Fund for Distinguished Young Scholars(21425625)the National Basic Research Program of China(2013CB733506,2015CB251403)+1 种基金the National Natural Science Foundation of China(U1610222)the Beijing Hundreds of Leading Talents Training Project of Science and Technology(Z171100001117154)
文摘This work addressed the multi-objective optimization of a biogas production system considering both environmental and economic criteria. A mixed integer non-linear programming(MINLP) model was established and solved with non-dominated sorting genetic algorithm Ⅱ, from which the Pareto fronts, the optimal technology combinations and operation conditions were obtained and analyzed. It's found that the system is feasible in both environmental and economic considerations after optimization. The most expensive processing section is decarbonization; the most expensive equipment is anaerobic digester; the most power-consuming processing section is digestion, followed by decarbonization and waste management. The positive green degree value on the process is attributed to processing section of digestion and waste management. 3:1 chicken feces and corn straw, solar energy, pressure swing adsorption and 3:1 chicken feces and rice straw, solar energy, pressure swing adsorption are turned out to be two robust technology combinations under different prices of methane and electricity by sensitivity analysis. The optimization results provide support for optimal design and operation of biogas production system considering environmental and economic objectives.
基金Supported by the Ministry of the Environment, Climate Protection and the Energy Sector, Baden-Wuettermberg
文摘In this paper a system combining a diesel reformer using catalytic partial oxidation (CPOX) with the Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Unit (APU) applications is modeled with respect to the cooling effect provided by internal reforming of methane in anode gas channel. A model mixture consisting of 80% n-hexadecane and 20%..!-methylnaphthalin is used to simulate the commercial diesel. The modelling consists of several steps. First, equilibrium gas composition at the exit of CPOX reformer is modelled in terms oxygen to car- bon (O/C) ratio, fuel utilization ratio and anode gas recirculation. Second, product composition, especially methane content, is determined for the me.th.an, ation process at the operating temperatures ra:ng!ng from 500 ℃to 520 ℃.Finally, the cooling power provided by internal reforming of methane in SOFC fuel channel is calculated for two concepts to increase the methane content of the diesel reformate. The results show that the first concept, operating the diesel reformer at low O/C ratio and/or, recirculation rat!o, is not realizable due to high probability of coke formation, whereas the second concept, combining a methanation process with CPOX, can provide a significant cool- ing effect in addition to the conventional c?oling concept which needs higher levels of excess air.
基金Supported by NSFC project No. 40372066 and SRFDP No. 20030183042
文摘Methane-rich fluids were recognized to be hosted in the reservoir volcanic rocks as primary inclusions. Samples were collected from core-drillings of volcanic gas reservoirs with reversed δ13C of alkane in the Xujiaweizi depression of the Songliao Basin. The volcanic rocks are rhyolite dominant being enriched in the more incompatible elements like Cs, Rb, Ba, Th, U and Th with relative high LREE, depleted HREE and negative anomalies of Ti and Nb, suggesting a melt involving both in mantle source and crustal assimilation. Primary fluids hosted in the volcanic rocks should have the same provenance with the magma. The authors concluded that the enclosed CH4 in the volcanics are mantle/magma-derived alkane and the reversed δ13C of alkane in the corresponding gas reservoirs is partly resulted from mixture between biogenic and abiogenic gases.
基金financially supported by the National Natural Science Foundation of China(Grant No.51776108,No.51476092)
文摘A detailed three-dimensional mechanistic model of a large-scale solid oxide fuel cell(SOFC) unit running on partially pre-reformed methane is developed. The model considers the coupling effects of chemical and electrochemical reactions, mass transport, momentum and heat transfer in the SOFC unit. After model validation, parametric simulations are conducted to investigate how the methane pre-reforming ratio affects the transport and electrochemistry of the SOFC unit. It is found that the methane steam reforming reaction has a "smoothing effect", which can achieve more uniform distributions of gas compositions, current density and temperature among the cell plane. In the case of 1500 W/m^2 power density output, adding 20% methane absorbs 50% of internal heat production inside the cell, reduces the maximum temperature difference inside the cell from 70 K to 22 K and reduces the cathode air supply by 75%, compared to the condition of completely pre-reforming of methane. Under specific operating conditions, the pre-reforming ratio of methane has an optimal range for obtaining a good temperature distribution and good cell performance.