It is of great significance to forecast high yield of CBM wells and analyze dynamic production by having an overall study on the characteristics of the produced CBM and determining the main factors influencing the pro...It is of great significance to forecast high yield of CBM wells and analyze dynamic production by having an overall study on the characteristics of the produced CBM and determining the main factors influencing the productivity of CBM. With the test report and the related geological parameters of a single well, methods of combining the productivity data and typical production curves were used to analyze different geological factors and how to influence the capacity of a single layer. Then, the paper proposed a new understanding about capacity characteristics of the study area and geological control factors: First, the Shanxi formation production capacity characteristics was divided into two-stages, showing signs of gas and gas break- through for 100 days. Second, two parameters, which include potential of gas production and gas production capacity, were bet- ter than the single parameter, such as gas content, coal thickness, and penetration to analyze affecting factors of single well pro- duction. Finally, comprehensive analysis concluded that the ratio of critical desorption pressure to reservoir pressure has greater influence on the production of vertical CBM wells. Besides, the potential of gas production capacity has greater impact at stage of showing gas signs; the coal reservoir pressure and gas production capacity have greater impact at stage of gas breakthrough for 100 days. Thus, to seek the coal bed methane with high ratio of critical desorption pressure to reservoir pressure and high yield of gas will be important guarantee to the success of the coal bed methane exploration and development.展开更多
Increasingly higher hard coal production capacity in Upper Silesian Coal Basin(Poland) in the last two decades led to significant increase of methane hazard occurrence in the workings of exploitation areas.An increase...Increasingly higher hard coal production capacity in Upper Silesian Coal Basin(Poland) in the last two decades led to significant increase of methane hazard occurrence in the workings of exploitation areas.An increase of methane content in the exploited seams and in the surrounding strata, associated with increasing depth of mining, results in higher methane emission into the longwall areas from exploited seams and degassing seams in the mining-induced de-stressed zone. Operational experience gained by the collieries confirms that reducing methane release during longwall operations often requires decreasing operating speed of a shearer in a shift. The paper presents an analysis of the parameters and factors,which have critical influence on the formation of methane hazard in longwall areas with high production capacity.展开更多
文摘It is of great significance to forecast high yield of CBM wells and analyze dynamic production by having an overall study on the characteristics of the produced CBM and determining the main factors influencing the productivity of CBM. With the test report and the related geological parameters of a single well, methods of combining the productivity data and typical production curves were used to analyze different geological factors and how to influence the capacity of a single layer. Then, the paper proposed a new understanding about capacity characteristics of the study area and geological control factors: First, the Shanxi formation production capacity characteristics was divided into two-stages, showing signs of gas and gas break- through for 100 days. Second, two parameters, which include potential of gas production and gas production capacity, were bet- ter than the single parameter, such as gas content, coal thickness, and penetration to analyze affecting factors of single well pro- duction. Finally, comprehensive analysis concluded that the ratio of critical desorption pressure to reservoir pressure has greater influence on the production of vertical CBM wells. Besides, the potential of gas production capacity has greater impact at stage of showing gas signs; the coal reservoir pressure and gas production capacity have greater impact at stage of gas breakthrough for 100 days. Thus, to seek the coal bed methane with high ratio of critical desorption pressure to reservoir pressure and high yield of gas will be important guarantee to the success of the coal bed methane exploration and development.
文摘Increasingly higher hard coal production capacity in Upper Silesian Coal Basin(Poland) in the last two decades led to significant increase of methane hazard occurrence in the workings of exploitation areas.An increase of methane content in the exploited seams and in the surrounding strata, associated with increasing depth of mining, results in higher methane emission into the longwall areas from exploited seams and degassing seams in the mining-induced de-stressed zone. Operational experience gained by the collieries confirms that reducing methane release during longwall operations often requires decreasing operating speed of a shearer in a shift. The paper presents an analysis of the parameters and factors,which have critical influence on the formation of methane hazard in longwall areas with high production capacity.