本文以强烈吸附在石墨电极上的亚甲绿作为电子传递媒介体构成修饰电极.在-0.25V~+0.10V电位区间内,吸附态的亚甲绿表现出相当可逆的氧化还原行为,电极反应有一个电子和一个质子参加.在pH=7.0的磷酸盐缓冲溶液中,其式量电位 E °...本文以强烈吸附在石墨电极上的亚甲绿作为电子传递媒介体构成修饰电极.在-0.25V~+0.10V电位区间内,吸附态的亚甲绿表现出相当可逆的氧化还原行为,电极反应有一个电子和一个质子参加.在pH=7.0的磷酸盐缓冲溶液中,其式量电位 E °’ 为-0.14V,表观电子传递速率常数K_(app)为4.4s^(-1).亚甲绿修饰电极对还原型烟酰胺腺嘌呤二核苷酸(NADH)的电化学氧化具有明显的催化作用,可使NADH的氧化过电位降低500mV,它作为NADH的电化学安培检测器具有很高的灵敏度和良好的重现性.文中还用X光电子能谱(ESCA)、衰减全反射红外光谱(ATR)等现代分析技术对修饰电极进行了表征.展开更多
The effects of copper ions and calcium ions on the depression of chlorite using CMC(carboxymethyl cellulose) as a depressant were studied through flotation tests,adsorption measurements,ζ potential tests and co-pre...The effects of copper ions and calcium ions on the depression of chlorite using CMC(carboxymethyl cellulose) as a depressant were studied through flotation tests,adsorption measurements,ζ potential tests and co-precipitation experiments.The results show that the electrostatic repulsion between the CMC molecules and the chlorite surfaces hinders the approach of the CMC to the chlorite while the presence of copper ions and calcium ions enhances the adsorption density of CMC.The action mechanisms of these two types of ions are different.Calcium ions can not adsorb onto the mineral surfaces,but they can interact with the CMC molecules,thus reducing the charge of the CMC and enhancing adsorption density.Copper ions can adsorb onto the mineral surfaces,which facilitates the CMC adsorption through acid/base interaction.The enhanced adsorption density is also attributed to the decreased electrostatic repulsion between the CMC and mineral surfaces as copper ions reduce the surface charge of both the mineral surfaces and the CMC molecules.展开更多
[Objective] This study was to analyze LaCl3 sprayed onto Scindapsus au- reus on Chlorophyll content and plasmamembrane permeability of leaves of Scindap- sus aureus, in order to determinate a suitable dosage of LaCl3....[Objective] This study was to analyze LaCl3 sprayed onto Scindapsus au- reus on Chlorophyll content and plasmamembrane permeability of leaves of Scindap- sus aureus, in order to determinate a suitable dosage of LaCl3. [Method] With Scindapsus aureus as the test subject, 110 households of 20 communities in the New District of Nantong were selected to investigate formaldehyde concentration in indoor air; and effect of LaCl3 on absorptive capacity to formaldehyde of Scindapsus aureus was studied through fumigating in laboratory. Simultaneously, its physiological and biochemical mechanism of formaldehyde resistance was studied. [Result] The re- sults showed that formaldehyde pollution of indoor air was serious in the New District of Nantong, and the degree of pollution was related to the time after decoration. The suitable concentration of LaCl3 for Scindapsus aureus was 20 mg/L. The ability to ab- sorb formaldehyde of Scindapsus aureus, which was calculated by per unit leaf area, was enhanced after spraying the suitable concentration of LaCl3 by 19.75%. When Scindapsus aureus was stressed by formaldehyde, chlorophyll content decreased by 39.87%, membrane permeability and cumulative MDA amount increased by 8.17% and 56.92%, respectively, and POD activity increased by 11.32%. However, by com- paring the group pre-sprayed with LaCl3 and the group not sprayed with LaCl3 under formaldehyde stress, chlorophyll content of Scindapsus aureus reduced lessly, mem- brane permeability and MDA both increased lessly, while POD activity increased more. [Conclusion] This study provides a new thinking direction for broadening of rare earth application and control measures of indoor air pollution.展开更多
A sensitive catalytic spectrophotometric method for the determination of ruthenium (Ⅲ) has been developed, based on its catalytic effect on the oxidation reaction of methyl green with potassium bromate in acid solu...A sensitive catalytic spectrophotometric method for the determination of ruthenium (Ⅲ) has been developed, based on its catalytic effect on the oxidation reaction of methyl green with potassium bromate in acid solution medium at 100℃. The above reaction is followed spectrophotometrically by measuring the decrease in the absorbance at 625 nm for the catalytic reaction of methyl green. The calibration curve for the recommended reaction-rate method was linear in the concentration range over 0.00-0.80 μg/L and the detection limit of the method for Ru (III) is 0.006 μg/L. Almost no foreign ions interfered in the determination at less than 25-fold concentration of Ru (Ⅲ). The method is highly sensitive, more selective and very stable, and has been successfully applied for the determination of trace ruthenium in some ores and metallurgy products.展开更多
Tetra-hydroxymethyl phosphonium chloride (THPC) has been considered as an important chrome-free tanning agent. To understand the THPC tanning mechanism, the structure, charge distribution, activity and tanning abili...Tetra-hydroxymethyl phosphonium chloride (THPC) has been considered as an important chrome-free tanning agent. To understand the THPC tanning mechanism, the structure, charge distribution, activity and tanning ability of each phosphorous compound in THPC tanning system were studied, by ^31p NMR, FT-IR spectroscopy, differential scanning calorimetry (DSC) and computational chemistry method, etc. When pH raised to 6.0, the decomposition of THPC would take place, which results in a production of free formaldehyde, tri-hydroxymethyl phosphonium (TrHP) and tri-hydroxymethyl phosphine oxide (TrHPO). At pH 9.0, THPC will be converted completely to TrHP and most TrHP is further oxidized into TrHPO. It is possible that, in reaction of phosphorous compounds and collagens, both P-C and C-O bonds would break simultaneously or individually. From molecular charge distribution and bond polar properties, it is deduced that, if P-C bonds break, the activity is in order of TrHPO 〉 THPC 〉 TrHE whereas if C--O bonds break, the order is TrHP 〉 THPC 〉 TrHPO. It is more possible that P--C bonds will break in reaction with collagen, and TrHPO may be more active in the THPC tanning system. The results of tanning and DSC also prove the above conclusion. Furthermore, the fact that the shrinkage temperature of THPC tanned leather was below 70℃ when basified to pH 5.0 or lower suggests that the hydroxymethyl groups of THPC and TrHP are less possible to combine directly with amino groups of collagen.展开更多
文摘本文以强烈吸附在石墨电极上的亚甲绿作为电子传递媒介体构成修饰电极.在-0.25V~+0.10V电位区间内,吸附态的亚甲绿表现出相当可逆的氧化还原行为,电极反应有一个电子和一个质子参加.在pH=7.0的磷酸盐缓冲溶液中,其式量电位 E °’ 为-0.14V,表观电子传递速率常数K_(app)为4.4s^(-1).亚甲绿修饰电极对还原型烟酰胺腺嘌呤二核苷酸(NADH)的电化学氧化具有明显的催化作用,可使NADH的氧化过电位降低500mV,它作为NADH的电化学安培检测器具有很高的灵敏度和良好的重现性.文中还用X光电子能谱(ESCA)、衰减全反射红外光谱(ATR)等现代分析技术对修饰电极进行了表征.
基金Project(51174229) supported by the National Natural Science Foundation of China
文摘The effects of copper ions and calcium ions on the depression of chlorite using CMC(carboxymethyl cellulose) as a depressant were studied through flotation tests,adsorption measurements,ζ potential tests and co-precipitation experiments.The results show that the electrostatic repulsion between the CMC molecules and the chlorite surfaces hinders the approach of the CMC to the chlorite while the presence of copper ions and calcium ions enhances the adsorption density of CMC.The action mechanisms of these two types of ions are different.Calcium ions can not adsorb onto the mineral surfaces,but they can interact with the CMC molecules,thus reducing the charge of the CMC and enhancing adsorption density.Copper ions can adsorb onto the mineral surfaces,which facilitates the CMC adsorption through acid/base interaction.The enhanced adsorption density is also attributed to the decreased electrostatic repulsion between the CMC and mineral surfaces as copper ions reduce the surface charge of both the mineral surfaces and the CMC molecules.
基金Supported by Qing Lan Project for Outstanding Young Teachers in Higher Education Institutions of Jiangsu Province(SJS[2010]27)College Students’Innovative Entrepreneurial Training Program of Jiangsu Province in 2014(SJBG[2010]8)+2 种基金Funding Project for Rural Environment Pollution Control Engineering and Technological Research Center of Jiangsu Province(SJK[2011]13)Funding Project of Science and Technology Plan in Nantong City(HS2014025)First Petty Funding Project for Ecological Construction of Nantong City(TH[2014]33)~~
文摘[Objective] This study was to analyze LaCl3 sprayed onto Scindapsus au- reus on Chlorophyll content and plasmamembrane permeability of leaves of Scindap- sus aureus, in order to determinate a suitable dosage of LaCl3. [Method] With Scindapsus aureus as the test subject, 110 households of 20 communities in the New District of Nantong were selected to investigate formaldehyde concentration in indoor air; and effect of LaCl3 on absorptive capacity to formaldehyde of Scindapsus aureus was studied through fumigating in laboratory. Simultaneously, its physiological and biochemical mechanism of formaldehyde resistance was studied. [Result] The re- sults showed that formaldehyde pollution of indoor air was serious in the New District of Nantong, and the degree of pollution was related to the time after decoration. The suitable concentration of LaCl3 for Scindapsus aureus was 20 mg/L. The ability to ab- sorb formaldehyde of Scindapsus aureus, which was calculated by per unit leaf area, was enhanced after spraying the suitable concentration of LaCl3 by 19.75%. When Scindapsus aureus was stressed by formaldehyde, chlorophyll content decreased by 39.87%, membrane permeability and cumulative MDA amount increased by 8.17% and 56.92%, respectively, and POD activity increased by 11.32%. However, by com- paring the group pre-sprayed with LaCl3 and the group not sprayed with LaCl3 under formaldehyde stress, chlorophyll content of Scindapsus aureus reduced lessly, mem- brane permeability and MDA both increased lessly, while POD activity increased more. [Conclusion] This study provides a new thinking direction for broadening of rare earth application and control measures of indoor air pollution.
基金Project 0520002 supported by Natural Science Foundation of Jiangxi Province, China
文摘A sensitive catalytic spectrophotometric method for the determination of ruthenium (Ⅲ) has been developed, based on its catalytic effect on the oxidation reaction of methyl green with potassium bromate in acid solution medium at 100℃. The above reaction is followed spectrophotometrically by measuring the decrease in the absorbance at 625 nm for the catalytic reaction of methyl green. The calibration curve for the recommended reaction-rate method was linear in the concentration range over 0.00-0.80 μg/L and the detection limit of the method for Ru (III) is 0.006 μg/L. Almost no foreign ions interfered in the determination at less than 25-fold concentration of Ru (Ⅲ). The method is highly sensitive, more selective and very stable, and has been successfully applied for the determination of trace ruthenium in some ores and metallurgy products.
基金the National Basic Research Program (2007CB616909)Startup Foundation of Applied Chemistry of the Key Discipline of Zhejiang University of Technology and Zhejiang Provincial Science and Technology Plan (2006C21107)
文摘Tetra-hydroxymethyl phosphonium chloride (THPC) has been considered as an important chrome-free tanning agent. To understand the THPC tanning mechanism, the structure, charge distribution, activity and tanning ability of each phosphorous compound in THPC tanning system were studied, by ^31p NMR, FT-IR spectroscopy, differential scanning calorimetry (DSC) and computational chemistry method, etc. When pH raised to 6.0, the decomposition of THPC would take place, which results in a production of free formaldehyde, tri-hydroxymethyl phosphonium (TrHP) and tri-hydroxymethyl phosphine oxide (TrHPO). At pH 9.0, THPC will be converted completely to TrHP and most TrHP is further oxidized into TrHPO. It is possible that, in reaction of phosphorous compounds and collagens, both P-C and C-O bonds would break simultaneously or individually. From molecular charge distribution and bond polar properties, it is deduced that, if P-C bonds break, the activity is in order of TrHPO 〉 THPC 〉 TrHE whereas if C--O bonds break, the order is TrHP 〉 THPC 〉 TrHPO. It is more possible that P--C bonds will break in reaction with collagen, and TrHPO may be more active in the THPC tanning system. The results of tanning and DSC also prove the above conclusion. Furthermore, the fact that the shrinkage temperature of THPC tanned leather was below 70℃ when basified to pH 5.0 or lower suggests that the hydroxymethyl groups of THPC and TrHP are less possible to combine directly with amino groups of collagen.