DNL-6, a silicoaluminophosphate(SAPO) molecular sieve with RHO topology, was hydrothermally synthesized using a new structure-directing agent(SDA), N,N'-dimethylethylenediamine. The obtained samples were characte...DNL-6, a silicoaluminophosphate(SAPO) molecular sieve with RHO topology, was hydrothermally synthesized using a new structure-directing agent(SDA), N,N'-dimethylethylenediamine. The obtained samples were characterized by X-ray diffraction, X-ray fluorescence, X-ray photoelectron spectroscopy, scanning electron microscopy, and N2 adsorption, which indicated that the synthesized DNL-6 s have high crystallinity and relatively high Si content ranging from 20% to 35%. Solid-state magic-angle-spinning(MAS) nuclear magnetic resonance(13 C, 29 Si, 27 Al, 31 P, and 27 Al multiple-quantum(MQ)) was conducted to investigate the status of the SDA and local atomic environment in the as-synthesized DNL-6. Thermal analysis revealed the presence of a large amount of amines in the DNL-6 crystals(about 4.4 SDAs per α-cage), which was the reason for the formation of DNL-6 with an ultrahigh Si content(36.4% Si per mole). Interestingly, DNL-6 exhibited excellent catalytic performance for methanol amination. More than 88% methanol conversion and 85% methylamine plus dimethylamine selectivity could be achieved due to the combined contribution of strong acid sites, suitable acid distribution, and narrow pore dimensions of DNL-6.展开更多
In this article, we have performed B3LYP/6-31+G(d) calculations of geometrical and reaction enthalpies of antioxidant mechanisms for ADPHT 1-4 (3-alkyl-4-phenylacetylamino-lH-1,2,4-triazol-5-ones) and its derivat...In this article, we have performed B3LYP/6-31+G(d) calculations of geometrical and reaction enthalpies of antioxidant mechanisms for ADPHT 1-4 (3-alkyl-4-phenylacetylamino-lH-1,2,4-triazol-5-ones) and its derivatives: HAT (hydrogen atom transfer), SET-PT (single electron transfer-proton transfer) and SPLET (sequential proton-loss electron transfer) were investigated in gas and solution-phases. Solvent contribution to enthalpies was computed employing integral equation formalism IEF-PCM (integral equation formalism method) method. It turned out that the lowest BDEs (bond dissociation energies) is obtained for C-H bonds due to captodative effect in various media. Results indicate that HAT mechanism represents the most anticipated process in gas-phase from thermodynamic point of view. But, the SPLET represents the thermodynamically preferred reaction pathway in solvents (2-propanol, acetonitrile, DMF (N,N-dimethylformamide) and water). The authors showed that bond dissociation energies, IP (ionization potential) and PA (proton affinity) are sufficient to evaluate the thermodynamically preferred mechanism.展开更多
In this work, we report the first CASPT2//CASSCF study of the mechanism of the photodecarboxylation of N-phthaloylglycine. The charge transfer excited state S CT ( 1∏∏*) is initially populated upon irradiation at...In this work, we report the first CASPT2//CASSCF study of the mechanism of the photodecarboxylation of N-phthaloylglycine. The charge transfer excited state S CT ( 1∏∏*) is initially populated upon irradiation at 266 nm. As a result of a fast internal conversion to the lowest excited singlet state S CT-N ( 1∏∏*), this state becomes a favorable precursor state for proton transfer, which triggers decarboxylation. Actually, the excited state intramolecular proton transfer (ESIPT) and decarboxylation processes proceed in an asynchronous concerted way. The ESIPT process is accomplished in the S CT-N ( 1∏∏*) state, but the CO 2 molecule is finally formed in the ground state via the S CT /S 0 conical intersection. Azomethine ylide is formed in the ground state as a complex with CO 2 . A barrier of ~15 kcal/mol indicates that azomethine ylide is stable in the ground state, which is consistent with the experimental findings. This work provides mechanistic details about the formation of azomethine ylide by photoreaction of N-phthaloylglycine.展开更多
基金supported by the National Natural Science Foundation of China(21476228,21676262)the Key Research Program of Frontier Sciences,CAS(QYZDB-SSW-JSC040)~~
文摘DNL-6, a silicoaluminophosphate(SAPO) molecular sieve with RHO topology, was hydrothermally synthesized using a new structure-directing agent(SDA), N,N'-dimethylethylenediamine. The obtained samples were characterized by X-ray diffraction, X-ray fluorescence, X-ray photoelectron spectroscopy, scanning electron microscopy, and N2 adsorption, which indicated that the synthesized DNL-6 s have high crystallinity and relatively high Si content ranging from 20% to 35%. Solid-state magic-angle-spinning(MAS) nuclear magnetic resonance(13 C, 29 Si, 27 Al, 31 P, and 27 Al multiple-quantum(MQ)) was conducted to investigate the status of the SDA and local atomic environment in the as-synthesized DNL-6. Thermal analysis revealed the presence of a large amount of amines in the DNL-6 crystals(about 4.4 SDAs per α-cage), which was the reason for the formation of DNL-6 with an ultrahigh Si content(36.4% Si per mole). Interestingly, DNL-6 exhibited excellent catalytic performance for methanol amination. More than 88% methanol conversion and 85% methylamine plus dimethylamine selectivity could be achieved due to the combined contribution of strong acid sites, suitable acid distribution, and narrow pore dimensions of DNL-6.
文摘In this article, we have performed B3LYP/6-31+G(d) calculations of geometrical and reaction enthalpies of antioxidant mechanisms for ADPHT 1-4 (3-alkyl-4-phenylacetylamino-lH-1,2,4-triazol-5-ones) and its derivatives: HAT (hydrogen atom transfer), SET-PT (single electron transfer-proton transfer) and SPLET (sequential proton-loss electron transfer) were investigated in gas and solution-phases. Solvent contribution to enthalpies was computed employing integral equation formalism IEF-PCM (integral equation formalism method) method. It turned out that the lowest BDEs (bond dissociation energies) is obtained for C-H bonds due to captodative effect in various media. Results indicate that HAT mechanism represents the most anticipated process in gas-phase from thermodynamic point of view. But, the SPLET represents the thermodynamically preferred reaction pathway in solvents (2-propanol, acetonitrile, DMF (N,N-dimethylformamide) and water). The authors showed that bond dissociation energies, IP (ionization potential) and PA (proton affinity) are sufficient to evaluate the thermodynamically preferred mechanism.
基金supported by the National Natural Science Foundation of China (21033002)the National Basic Research Program of China(2011CB808503)
文摘In this work, we report the first CASPT2//CASSCF study of the mechanism of the photodecarboxylation of N-phthaloylglycine. The charge transfer excited state S CT ( 1∏∏*) is initially populated upon irradiation at 266 nm. As a result of a fast internal conversion to the lowest excited singlet state S CT-N ( 1∏∏*), this state becomes a favorable precursor state for proton transfer, which triggers decarboxylation. Actually, the excited state intramolecular proton transfer (ESIPT) and decarboxylation processes proceed in an asynchronous concerted way. The ESIPT process is accomplished in the S CT-N ( 1∏∏*) state, but the CO 2 molecule is finally formed in the ground state via the S CT /S 0 conical intersection. Azomethine ylide is formed in the ground state as a complex with CO 2 . A barrier of ~15 kcal/mol indicates that azomethine ylide is stable in the ground state, which is consistent with the experimental findings. This work provides mechanistic details about the formation of azomethine ylide by photoreaction of N-phthaloylglycine.