An Hβ-supported heteropoly acid (H3PW12O40 (HPW)/Hβ) catalyst was successfully prepared by wetness impregnation, and investigated in the alkylation of toluene with tert-butyl alcohol for the synthesis of 4-tert-...An Hβ-supported heteropoly acid (H3PW12O40 (HPW)/Hβ) catalyst was successfully prepared by wetness impregnation, and investigated in the alkylation of toluene with tert-butyl alcohol for the synthesis of 4-tert-butyltoluene (PTBT). X-ray diffraction, scanning electron microscopy, transmis- sion electron microscopy, fourier-transform infrared spectroscopy, inductively coupled plas- ma-optical emission spectrometry, the brunauer emmett teller (BET) method, tempera- ture-programmed NH3 desorption, and pyridine adsorption infrared spectroscopy were used to characterize the catalyst. The results showed that loading HPW on Hβ effectively increased the B acidity and decreased the pore size of Hβ. The B acidity of HPW/Hβ was 142.97 μmol/g, which is 69.74% higher than that of Hβ (84.23 μmol/g). The catalytic activity of the HPW/Hβ catalyst was much better than that of the parent Hβ zeolite because of its high B acidity. The toluene conversion over HPW/Hβ reached 73.1%, which is much higher than that achieved with Hβ (54.0%). When HPW was loaded on Hβ, the BET surface area of Hβ decreased from 492.5 to 379.6 m2/g, accompa- nied by a significant decrease in the pore size from 3.90 to 3.17 nm. Shape selectivity can therefore play an important role and increase the product selectivity of the HPW/Hβ catalyst compared with that of the parent Hβ. PTBT (kinetic diameter 0.58 nm) can easily diffuse through the narrowed pores of HPW/Hβ, but 3-tert-butyltoluene (kinetic diameter 0.65 nm) diffusion is restricted because of steric hindrance in these narrow pores. This results in high PTBT selectivity over HPW/Hβ (around 81%). The HPW/Hβ catalyst gave a stable catalytic performance in reusability tests.展开更多
The realuminated H-mordenite catalysts (HM1-4) treated with different concentrations of NaOH and NaAlO2 aqueous solutions were prepared, and characterized by inductively coupled plasma (ICP), X-ray diffraction (...The realuminated H-mordenite catalysts (HM1-4) treated with different concentrations of NaOH and NaAlO2 aqueous solutions were prepared, and characterized by inductively coupled plasma (ICP), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR) and temperature-programmed desorption of ammonia, They are of lower Si/AI ratio and higher acid amount while keeping a high relative crystallinity. Their catalytic performances were evaluated with the liquid-phase tert-butylation of toluene with tert-butyl alcohol in a 100 ml stainless steel batch reactor equipped with a stirrer. HM2 zeolite catalyst, obtained by treating HM in 0.1 mol.L-1 NaOH followed by 0.05 mol·L^-1 NaAlO2 aqueous solution, shows a higher catalytic activity because of its highest acid amount. For HM2 catalyst the influences of reaction conditions on catalytic performance were investigated. The conversion of toluene is 50.3% and the selectivity ofp-tert-butyltoluene is 74.7% at a temperature of 180℃, 2 of molar ratio of tert-butyl alcohol to toluene, 4h of reaction time and 0.2 of M(catalyst)/M(toluene).展开更多
文摘An Hβ-supported heteropoly acid (H3PW12O40 (HPW)/Hβ) catalyst was successfully prepared by wetness impregnation, and investigated in the alkylation of toluene with tert-butyl alcohol for the synthesis of 4-tert-butyltoluene (PTBT). X-ray diffraction, scanning electron microscopy, transmis- sion electron microscopy, fourier-transform infrared spectroscopy, inductively coupled plas- ma-optical emission spectrometry, the brunauer emmett teller (BET) method, tempera- ture-programmed NH3 desorption, and pyridine adsorption infrared spectroscopy were used to characterize the catalyst. The results showed that loading HPW on Hβ effectively increased the B acidity and decreased the pore size of Hβ. The B acidity of HPW/Hβ was 142.97 μmol/g, which is 69.74% higher than that of Hβ (84.23 μmol/g). The catalytic activity of the HPW/Hβ catalyst was much better than that of the parent Hβ zeolite because of its high B acidity. The toluene conversion over HPW/Hβ reached 73.1%, which is much higher than that achieved with Hβ (54.0%). When HPW was loaded on Hβ, the BET surface area of Hβ decreased from 492.5 to 379.6 m2/g, accompa- nied by a significant decrease in the pore size from 3.90 to 3.17 nm. Shape selectivity can therefore play an important role and increase the product selectivity of the HPW/Hβ catalyst compared with that of the parent Hβ. PTBT (kinetic diameter 0.58 nm) can easily diffuse through the narrowed pores of HPW/Hβ, but 3-tert-butyltoluene (kinetic diameter 0.65 nm) diffusion is restricted because of steric hindrance in these narrow pores. This results in high PTBT selectivity over HPW/Hβ (around 81%). The HPW/Hβ catalyst gave a stable catalytic performance in reusability tests.
基金Supported by Major Basic Research Project of Natural Science Foundation of Jiangsu Province Colleges (07KJA53013)
文摘The realuminated H-mordenite catalysts (HM1-4) treated with different concentrations of NaOH and NaAlO2 aqueous solutions were prepared, and characterized by inductively coupled plasma (ICP), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR) and temperature-programmed desorption of ammonia, They are of lower Si/AI ratio and higher acid amount while keeping a high relative crystallinity. Their catalytic performances were evaluated with the liquid-phase tert-butylation of toluene with tert-butyl alcohol in a 100 ml stainless steel batch reactor equipped with a stirrer. HM2 zeolite catalyst, obtained by treating HM in 0.1 mol.L-1 NaOH followed by 0.05 mol·L^-1 NaAlO2 aqueous solution, shows a higher catalytic activity because of its highest acid amount. For HM2 catalyst the influences of reaction conditions on catalytic performance were investigated. The conversion of toluene is 50.3% and the selectivity ofp-tert-butyltoluene is 74.7% at a temperature of 180℃, 2 of molar ratio of tert-butyl alcohol to toluene, 4h of reaction time and 0.2 of M(catalyst)/M(toluene).