In this work, esterification of acetic acid and methanol to synthesize methyl acetate in a batch stirred reactor is studied in the temperature range of 305.15–333.15 K. Sulfuric acid is used as the homogeneous cataly...In this work, esterification of acetic acid and methanol to synthesize methyl acetate in a batch stirred reactor is studied in the temperature range of 305.15–333.15 K. Sulfuric acid is used as the homogeneous catalyst with concentrations ranging from 0.0633 mol·L-1to 0.3268 mol·L-1. The feed molar ratio of acetic acid to methanol is varied from 1:1 to 1:4. The influences of temperature, catalyst concentration and reactant concentration on the reaction rate are investigated. A second order kinetic rate equation is used to correlate the experimental data. The forward and backward reaction rate constants and activation energies are determined from the Arrhenius plot.The developed kinetic model is compared with the models in literature. The developed kinetic equation is useful for the simulation of reactive distillation column for the synthesis of methyl acetate.展开更多
In the present study, the modified (non-Keggin-type) aqueous solutions of Mo-V-phosphoric heteropoly acids HaPzMoyVx,Oh (HPA-x') were applied as homogeneous catalysts for the two-stage oxidation of TMP (2,3,6-tr...In the present study, the modified (non-Keggin-type) aqueous solutions of Mo-V-phosphoric heteropoly acids HaPzMoyVx,Oh (HPA-x') were applied as homogeneous catalysts for the two-stage oxidation of TMP (2,3,6-trimethylphenol) by oxygen into TMQ (2,3,5-trimethyl-l,4-benzoquinone), the latter being the key intermediate in the synthesis of vitamin E. The TMQ yield was analyzed regarding solvent type, reaction temperature, molar HPA-x ':TMP ratio, and the concentration of vanadium (V) in the HPA-x' solution. The TMQ yield was found to depend strongly on the catalyst redox potential and the rate of electron transfer. The results obtained enabled to establish the optimal reaction conditions as well as to suggest the reaction mechanism. In the target reaction, which proceeds in the two-phase system, the TMQ yield is higher than 99%. After phase separation, the catalyst is rapidly regenerated by oxygen and reused.展开更多
A novel environmental friendly catalyst, H4SiW12O40/MCM-48, was prepared by impregnation method. The catalysts were characterized by means of XRD and FT-IR. The synthesis of n-butyl methacrylate catalyzed by H4SiW12O4...A novel environmental friendly catalyst, H4SiW12O40/MCM-48, was prepared by impregnation method. The catalysts were characterized by means of XRD and FT-IR. The synthesis of n-butyl methacrylate catalyzed by H4SiW12O40/MCM-48 was studied with methacrylic acid and n-butyl alcohol as reactants. H4SiW12O40/MCM-48 was an excellent catalyst for the synthesis of n-butyl methacrylate and Keggin structure ofH4SiW12O40 kept unchanged after impregnated on surface of the molecular sieve support. Effects of n(methacrylic acid): n(n-butyl alcohol), catalyst dosage, cyclohexane (water-stripped reagent) and reaction time on the yields of the product were investigated. The optimum conditions have been found, that is, molar ratio of acid to alcohol is 1:1.5, mass ratio of catalyst used to the reactant is 1.5%, cyclohexane is 10 mL and reaction time is 1.5h. Under these conditions, the yield of n-butyl methacrylate can reach 73.2%.展开更多
文摘In this work, esterification of acetic acid and methanol to synthesize methyl acetate in a batch stirred reactor is studied in the temperature range of 305.15–333.15 K. Sulfuric acid is used as the homogeneous catalyst with concentrations ranging from 0.0633 mol·L-1to 0.3268 mol·L-1. The feed molar ratio of acetic acid to methanol is varied from 1:1 to 1:4. The influences of temperature, catalyst concentration and reactant concentration on the reaction rate are investigated. A second order kinetic rate equation is used to correlate the experimental data. The forward and backward reaction rate constants and activation energies are determined from the Arrhenius plot.The developed kinetic model is compared with the models in literature. The developed kinetic equation is useful for the simulation of reactive distillation column for the synthesis of methyl acetate.
文摘In the present study, the modified (non-Keggin-type) aqueous solutions of Mo-V-phosphoric heteropoly acids HaPzMoyVx,Oh (HPA-x') were applied as homogeneous catalysts for the two-stage oxidation of TMP (2,3,6-trimethylphenol) by oxygen into TMQ (2,3,5-trimethyl-l,4-benzoquinone), the latter being the key intermediate in the synthesis of vitamin E. The TMQ yield was analyzed regarding solvent type, reaction temperature, molar HPA-x ':TMP ratio, and the concentration of vanadium (V) in the HPA-x' solution. The TMQ yield was found to depend strongly on the catalyst redox potential and the rate of electron transfer. The results obtained enabled to establish the optimal reaction conditions as well as to suggest the reaction mechanism. In the target reaction, which proceeds in the two-phase system, the TMQ yield is higher than 99%. After phase separation, the catalyst is rapidly regenerated by oxygen and reused.
基金Acknowledgment: This work was financially supported by the Natural Science Foundation of Hubei Province, China (No. 2005ABA053) and Hubei Normal University.
文摘A novel environmental friendly catalyst, H4SiW12O40/MCM-48, was prepared by impregnation method. The catalysts were characterized by means of XRD and FT-IR. The synthesis of n-butyl methacrylate catalyzed by H4SiW12O40/MCM-48 was studied with methacrylic acid and n-butyl alcohol as reactants. H4SiW12O40/MCM-48 was an excellent catalyst for the synthesis of n-butyl methacrylate and Keggin structure ofH4SiW12O40 kept unchanged after impregnated on surface of the molecular sieve support. Effects of n(methacrylic acid): n(n-butyl alcohol), catalyst dosage, cyclohexane (water-stripped reagent) and reaction time on the yields of the product were investigated. The optimum conditions have been found, that is, molar ratio of acid to alcohol is 1:1.5, mass ratio of catalyst used to the reactant is 1.5%, cyclohexane is 10 mL and reaction time is 1.5h. Under these conditions, the yield of n-butyl methacrylate can reach 73.2%.