An Hβ-supported heteropoly acid (H3PW12O40 (HPW)/Hβ) catalyst was successfully prepared by wetness impregnation, and investigated in the alkylation of toluene with tert-butyl alcohol for the synthesis of 4-tert-...An Hβ-supported heteropoly acid (H3PW12O40 (HPW)/Hβ) catalyst was successfully prepared by wetness impregnation, and investigated in the alkylation of toluene with tert-butyl alcohol for the synthesis of 4-tert-butyltoluene (PTBT). X-ray diffraction, scanning electron microscopy, transmis- sion electron microscopy, fourier-transform infrared spectroscopy, inductively coupled plas- ma-optical emission spectrometry, the brunauer emmett teller (BET) method, tempera- ture-programmed NH3 desorption, and pyridine adsorption infrared spectroscopy were used to characterize the catalyst. The results showed that loading HPW on Hβ effectively increased the B acidity and decreased the pore size of Hβ. The B acidity of HPW/Hβ was 142.97 μmol/g, which is 69.74% higher than that of Hβ (84.23 μmol/g). The catalytic activity of the HPW/Hβ catalyst was much better than that of the parent Hβ zeolite because of its high B acidity. The toluene conversion over HPW/Hβ reached 73.1%, which is much higher than that achieved with Hβ (54.0%). When HPW was loaded on Hβ, the BET surface area of Hβ decreased from 492.5 to 379.6 m2/g, accompa- nied by a significant decrease in the pore size from 3.90 to 3.17 nm. Shape selectivity can therefore play an important role and increase the product selectivity of the HPW/Hβ catalyst compared with that of the parent Hβ. PTBT (kinetic diameter 0.58 nm) can easily diffuse through the narrowed pores of HPW/Hβ, but 3-tert-butyltoluene (kinetic diameter 0.65 nm) diffusion is restricted because of steric hindrance in these narrow pores. This results in high PTBT selectivity over HPW/Hβ (around 81%). The HPW/Hβ catalyst gave a stable catalytic performance in reusability tests.展开更多
This study was performed for the development of a green and promising approach for the synthesis of methyl acrylate and acrylic acid by a one‐step aldol condensation reaction of dimethoxymethane and methyl acetate ov...This study was performed for the development of a green and promising approach for the synthesis of methyl acrylate and acrylic acid by a one‐step aldol condensation reaction of dimethoxymethane and methyl acetate over cesium oxide‐supported on ZSM‐35 zeolite catalysts; the effect of base sites as well as acid sites on the aldol condensation reaction was studied in detail. It was found that base sites were harmful for aldol condensation due to their failure in catalyzing the decomposition of dimethoxymethane precursor into formaldehyde, whereas the acid site was indispensable for the reaction to proceed. This reaction cannot take place without an acid site. Although acid sites in H‐form of the zeolite(HZSM‐35) are indispensable for the aldol condensation reaction, not all of them tend to favor this reaction. A strong acid catalyzes methanol‐to‐olefin‐like reactions resulting in hydrocarbon byproducts, which are finally transferred to hard coke. Medium strong acids and weak acids are great candidates for the target aldol condensation reaction with high activity and selectivity. A γ‐Al2O3 sample with abundant weak‐strength Lewis acid sites, together with a few medium‐strong‐strength acid sites, performs well with a high activity and considerable stability during the synthesis of methyl acrylate and acrylic acid.展开更多
Acrylic acid(AA)and its ester,methyl acrylate(MA),were produced by a green one‐step aldol condensation reaction of dimethoxymethane and methyl acetate.The reaction was conducted over ZSM‐35 zeolites with different c...Acrylic acid(AA)and its ester,methyl acrylate(MA),were produced by a green one‐step aldol condensation reaction of dimethoxymethane and methyl acetate.The reaction was conducted over ZSM‐35 zeolites with different concentrations of Bronsted acid,which were prepared by the sodium ion‐exchange process with H‐form zeolite.The acidic property of HZSM‐35 was studied in detail through infrared experiments.About 51%of all bridging OH groups were distributed in cages,while 23%and 26%,respectively,were distributed in 10‐and 8‐ring channels.The catalytic performance was enhanced by a high concentration of Bronsted acid,indicating that Bronsted acid is an active site for the aldol condensation reaction.The ZSM‐35 zeolite possessing a concentration of Bronsted acid as high as 0.049 mmol/g demonstrated excellent performance with a MA+AA selectivity of up to 73%.展开更多
A series of hexadecylphosphate acid(HDPA) terminated mixed-oxide nanoparticles have been investigated to catalyze the oxidation of toluene exclusive to benzaldehyde under mild conditions in an emulsion of toluene/wate...A series of hexadecylphosphate acid(HDPA) terminated mixed-oxide nanoparticles have been investigated to catalyze the oxidation of toluene exclusive to benzaldehyde under mild conditions in an emulsion of toluene/water with the catalysts as stabilizers. With the HDPA-Fe2 O3/Al2 O3 as the basic catalyst, a series of transition metals, such as Mn, Co, Ni, Cu, Cr, Mo, V, and Ti, was respectively doped to the basic catalyst to modify the performance of the catalytic system, in expectation of influencing the mobility of the lattice oxygen species in the oxide catalysts. Under normally working conditions of the catalytic system, the nanoparticles of catalysts located themselves at the interface between the oil and water phases, constituting the Pickering emulsion. Both the doped iron oxide and its surface adsorbed hexadecylphosphate molecules were essential to the catalytic system for excellent performances with high toluene conversions as well as the exclusive selectivity to benzaldehyde. Under optimal conditions, ~83% of toluene conversion and >99% selectivity to benzaldehyde were obtained, using molecular oxygen as oxidant and HDPA-(Fe2 O3-Ni O)/Al2 O3 as the catalyst. This process is green and low cost to produce high quality benzaldehyde from O2 oxidation of toluene.展开更多
The 0.4 nm molecular sieve supported Cu-Ni bimetal catalysts for direct synthesis of dimethyl carbonate (DMC) from CO 2 and CH 3 OH were prepared and investigated. The synthesized catalysts were fully characterized by...The 0.4 nm molecular sieve supported Cu-Ni bimetal catalysts for direct synthesis of dimethyl carbonate (DMC) from CO 2 and CH 3 OH were prepared and investigated. The synthesized catalysts were fully characterized by BET, XRD (X-ray diffraction), TPR (temperature programmed reduction), IR (infra-red adsorption), NH 3-TPD (temperature programmed desorption) and CO 2-TPD (temperature programmed desorption) techniques. The results showed that the surface area of catalysts decreased with increasing metal content, and the metals as well as Cu-Ni alloy co-existed on the reduced catalyst surface. There existed interaction between metal and carrier, and moreover, metal particles affected obviously the acidity and basicity of carrier. The large amount of basic sites facilitated the activation of methanol to methoxyl species and their subsequent reaction with activated carbon dioxide. The catalysts were evaluated in a continuous tubular fixed-bed micro-gaseous reactor and the catalyst with bimetal loading of 20% (by mass) had best catalytic activities. Under the conditions of 393 K, 1.1 MPa, 5 h and gas space velocity of 510 h 1 , the selectivity and yield of DMC were higher than 86.0 % and 5.0 %, respectively.展开更多
Effectiveness of hydrous manganese dioxide (δMnO2) adsorbing humic acid under different conditions and its subsequent effects on trihalomethane (THMs) formation have been studied. Humicacid removal increases with...Effectiveness of hydrous manganese dioxide (δMnO2) adsorbing humic acid under different conditions and its subsequent effects on trihalomethane (THMs) formation have been studied. Humicacid removal increases with higher pH and residual TOC decreases from 3.63 mg/L to 1.68 mg/L with pH increasing from 5.5 to 8.5 at 3.0 mg/L δMnO2; δMnO2 exhibits good potential of removing humic acid and the adsorbing potential as high as 1 mg TOC/mg δMnO2 is achieved; the fractional reduction of humic acid with higher molecular weight is about 30% higher than that with lower molecular weight. δMnO2 adsorption obviously reduces subsequent THMs formation; more significant THMs formation reduction is observed for humic acid with higher molecular weight. δMnO2 adsorption is an important factor that contributes to humic acid removal and THMs formation reduction in permanganate pre-oxidation process.展开更多
DNL-6, a silicoaluminophosphate(SAPO) molecular sieve with RHO topology, was hydrothermally synthesized using a new structure-directing agent(SDA), N,N'-dimethylethylenediamine. The obtained samples were characte...DNL-6, a silicoaluminophosphate(SAPO) molecular sieve with RHO topology, was hydrothermally synthesized using a new structure-directing agent(SDA), N,N'-dimethylethylenediamine. The obtained samples were characterized by X-ray diffraction, X-ray fluorescence, X-ray photoelectron spectroscopy, scanning electron microscopy, and N2 adsorption, which indicated that the synthesized DNL-6 s have high crystallinity and relatively high Si content ranging from 20% to 35%. Solid-state magic-angle-spinning(MAS) nuclear magnetic resonance(13 C, 29 Si, 27 Al, 31 P, and 27 Al multiple-quantum(MQ)) was conducted to investigate the status of the SDA and local atomic environment in the as-synthesized DNL-6. Thermal analysis revealed the presence of a large amount of amines in the DNL-6 crystals(about 4.4 SDAs per α-cage), which was the reason for the formation of DNL-6 with an ultrahigh Si content(36.4% Si per mole). Interestingly, DNL-6 exhibited excellent catalytic performance for methanol amination. More than 88% methanol conversion and 85% methylamine plus dimethylamine selectivity could be achieved due to the combined contribution of strong acid sites, suitable acid distribution, and narrow pore dimensions of DNL-6.展开更多
H‐ZSM‐5 zeolite is a typical catalyst for methanol‐to‐olefins(MTO)conversion.Although the performance of zeolite catalysts for MTO conversion is related to the actual location of acid sites in the zeolite framewor...H‐ZSM‐5 zeolite is a typical catalyst for methanol‐to‐olefins(MTO)conversion.Although the performance of zeolite catalysts for MTO conversion is related to the actual location of acid sites in the zeolite framework,the catalytic roles of the acid sites in different pore channels of the H‐ZSM‐5 zeolite are not well understood.In this study,the MTO reaction network,involving the aromatic cycle,alkene cycle,and aromatization process,and also the diffusion behavior of methanol feedstock and olefin and aromatic products at different acid sites in the straight channel,sinusoidal channel,and intersection cavity of H‐ZSM‐5 zeolite was comparatively investigated using density functional theory calculations and molecular dynamic simulations.The results indicated that the aromatic cycle and aromatization process occurred preferentially at the acid sites in the intersection cavities with a much lower energy barrier than that at the acid sites in the straight and sinusoidal channels.In contrast,the formation of polymethylbenzenes was significantly suppressed at the acid sites in the sinusoidal and straight channels,whereas the alkene cycle can occur at all three types of acid sites with similar energy barriers and probabilities.Consequently,the catalytic performance of H‐ZSM‐5 zeolite for MTO conversion,including activity and product selectivity,can be regulated properly through the purposive alteration of the acid site distribution,viz.,the location of Al in the zeolite framework.This study helps to elucidate the relation between the catalytic performance of different acid sites in the H‐ZSM‐5 zeolite framework for MTO conversion,which should greatly benefit the design of efficient catalyst for methanol conversion.展开更多
In pursuit of low-cost direct formic acid fuel cells,tungsten carbide(WC)supported Pd catalyst is considered as an ideal candidate for efficient decomposition of formic acid due to low Pd utilization and excellent per...In pursuit of low-cost direct formic acid fuel cells,tungsten carbide(WC)supported Pd catalyst is considered as an ideal candidate for efficient decomposition of formic acid due to low Pd utilization and excellent performance.Herein,different adsorption configurations and active sites of the intermediates,involved in the HCOOH decomposition,on WC(0001)-supported Pd monolayer(Pd/WC(0001))surface investigated by using density functional theory.The results reveal that trans-HCOOH,HCOO,cis-COOH,trans-COOH,HCO,CO,H2 O,OH and H exhibit chemisorption on Pd/WC(0001)surface,whereas cis-HCOOH and CO2 exhibit weak interactions with Pd/WC(0001)surface.In addition,the minimum energy pathways of HCOOH decomposition are analyzed to generate CO and CO2 due to the fracture of C–H,H–O and C–O bonds.The adsorbed HCOOH,HCOO,mH COO,cis-COOH and trans-COOH configurations exhibit dissociation rather than desorption.CO formation occurs through the decomposition of cis-COOH,trans-COOH and HCO,whereas the CO2 formation happens due to the decomposition of HCOO.It is found that the most favorable pathway for HCOOH decomposition on Pd/WC(0001)surface is HCOOH→HCOO→CO2,where the formation of CO2 from HCOO dehydrogenation determines the reaction rate.Overall,CO2 is the most dominant product of HCOOH decomposition on Pd/WC(0001)surface.The presence of WC,as monolayer Pd carrier,does not alter the catalytic behavior of Pd and significantly reduces the Pd utilization.展开更多
At room temperature, dibenzoyl peroxide and pyridine N-oxide reacted with metallic copper powder in a mixed solvent(dichloromethane, trichloromethane and tetrahydrofuran), resulting in a binuclear copper(Ⅱ) complex. ...At room temperature, dibenzoyl peroxide and pyridine N-oxide reacted with metallic copper powder in a mixed solvent(dichloromethane, trichloromethane and tetrahydrofuran), resulting in a binuclear copper(Ⅱ) complex. [Cu (C_5H_5NO)-(C_6H_5COO)_2]_2. The structure of the complex was characterized by elemental analyses.IR spectra and X-ray single crystal analysis. The crystal is triclinic, space group P1,with cell parameters . a= 9. 262(4) ,b= 10. 697(2) , c=10. 881 (3 )A , a=59. 60( 2 ),β= 74. 83 ( 3 ) .Y = 72. 80 ( 2 )°. V= 880. 0 A ̄3 . D_c = 1 . 5 20 g/cm ̄3 . Z = 1 . μ= 1 2. 7 cm-1, R=0. 044 ,R_w=0. 048 for 3477 reflections with I>3σ(I), M_r=805. 78. Each copper(Ⅱ) atom is coordinated by four bridging bidentate benzoate ligands and one pyridine M-oxide.展开更多
The amphiphilic copolymer poly(hydroxyethyl methacrylate-co-tert-butyl methacrylate) [P(HEMA-co-tBMA)] was synthesized by activators regenerated by electron transfer atom transfer radical polymerization (ARGET A...The amphiphilic copolymer poly(hydroxyethyl methacrylate-co-tert-butyl methacrylate) [P(HEMA-co-tBMA)] was synthesized by activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP), with the synthesis process monitored by in-situ infrared spectroscopy (IR). The molecular weight, chem- ical structure and characteristics of the copolymer were determined by 1H NMR, gas chromatography and gel permeation chromatography. The influences of various parameters on the living polymerization were explored. The molecular weight of the copolymer with narrow molecular weight distribution (Mw/Mn 〈 1.50) increases ap- proximately linearly with the monomer conversion, indicating a good control of polymerization. In the reaction temperature range from 50 ℃ to 90 ℃, the monomer conversion is higher at 60 ℃. The tBMA conversion rate decreases gradually with the increase of tBMA content, while the HEMA conversion is hardly affected by HEMA content. Weak polar solvent is more favorable to the polymerization compared to polar solvent. The molar ratio of reducing agent to catalyst has significant effect on the polymerization and increasing the amount of reducing agent will accelerate the reaction rate but causes wider molecular weight distribution. It is indicated that in-situ IR monitoring contributes to a more in-depth understanding of the mechanism of methacrylate monomer copolymerization.展开更多
Methylation in the bases of DNA is known to induce B-Z conformation change. In this work, molecular mechanics and normal mode analysis are used to probe how certain methylation affects the internal interactions and th...Methylation in the bases of DNA is known to induce B-Z conformation change. In this work, molecular mechanics and normal mode analysis are used to probe how certain methylation affects the internal interactions and thermodynamic motions in the DNA double helixes in both B and Z conformations, and its implication to B-Z conformation change. By molecular modeling with Insight II, two cases involving cytosine C5 and guanine C8 methylation on both B and Z-form DNA duplex d(CGCGCG)2 are studied in comparison with the corresponding unmethylated duplexes. The internal interaction energies computed based on a molecular mechanics force field and the entropies due to internal motions computed according to a normal mode analysis are in fare agreement with respective observed thermodynamic quantities. The analysis on the computed individual energy terms suggests that the observed B-Z conformation change induced by methylation is primarily driven by enthalpic factors. A combination of changes in Van der Waals interaction, electrostatic interaction and hydrogen bonding likely contributes to the change of enthalpy that favors Z-conformation in the methylated states.展开更多
Density functional theory (DFT) calculations are reported for the structures of neutral and zwitterionic glycine-(CHaOH)n where n=1-6. Initial geometries of the clusters of neutral and zwitterionic glycine with 1-...Density functional theory (DFT) calculations are reported for the structures of neutral and zwitterionic glycine-(CHaOH)n where n=1-6. Initial geometries of the clusters of neutral and zwitterionic glycine with 1-6 methanol molecules are fully optimized at B3LYP/6-31+G^* level of theory. The lowest energy configurations are located and their hydrogen bond structures are analyzed. Theoretical prediction reveals that the methanols prefer to locate near the carboxylic acid group for the small clusters (n_〈3) with the neutral form while the configurations with the methanols bridging the acid and the amino group are favorite in the zwitterionic form clusters. When the number of the methanol molecules in the clusters reaches five and six, the two forms tend to be isoenergetic.展开更多
文摘An Hβ-supported heteropoly acid (H3PW12O40 (HPW)/Hβ) catalyst was successfully prepared by wetness impregnation, and investigated in the alkylation of toluene with tert-butyl alcohol for the synthesis of 4-tert-butyltoluene (PTBT). X-ray diffraction, scanning electron microscopy, transmis- sion electron microscopy, fourier-transform infrared spectroscopy, inductively coupled plas- ma-optical emission spectrometry, the brunauer emmett teller (BET) method, tempera- ture-programmed NH3 desorption, and pyridine adsorption infrared spectroscopy were used to characterize the catalyst. The results showed that loading HPW on Hβ effectively increased the B acidity and decreased the pore size of Hβ. The B acidity of HPW/Hβ was 142.97 μmol/g, which is 69.74% higher than that of Hβ (84.23 μmol/g). The catalytic activity of the HPW/Hβ catalyst was much better than that of the parent Hβ zeolite because of its high B acidity. The toluene conversion over HPW/Hβ reached 73.1%, which is much higher than that achieved with Hβ (54.0%). When HPW was loaded on Hβ, the BET surface area of Hβ decreased from 492.5 to 379.6 m2/g, accompa- nied by a significant decrease in the pore size from 3.90 to 3.17 nm. Shape selectivity can therefore play an important role and increase the product selectivity of the HPW/Hβ catalyst compared with that of the parent Hβ. PTBT (kinetic diameter 0.58 nm) can easily diffuse through the narrowed pores of HPW/Hβ, but 3-tert-butyltoluene (kinetic diameter 0.65 nm) diffusion is restricted because of steric hindrance in these narrow pores. This results in high PTBT selectivity over HPW/Hβ (around 81%). The HPW/Hβ catalyst gave a stable catalytic performance in reusability tests.
文摘This study was performed for the development of a green and promising approach for the synthesis of methyl acrylate and acrylic acid by a one‐step aldol condensation reaction of dimethoxymethane and methyl acetate over cesium oxide‐supported on ZSM‐35 zeolite catalysts; the effect of base sites as well as acid sites on the aldol condensation reaction was studied in detail. It was found that base sites were harmful for aldol condensation due to their failure in catalyzing the decomposition of dimethoxymethane precursor into formaldehyde, whereas the acid site was indispensable for the reaction to proceed. This reaction cannot take place without an acid site. Although acid sites in H‐form of the zeolite(HZSM‐35) are indispensable for the aldol condensation reaction, not all of them tend to favor this reaction. A strong acid catalyzes methanol‐to‐olefin‐like reactions resulting in hydrocarbon byproducts, which are finally transferred to hard coke. Medium strong acids and weak acids are great candidates for the target aldol condensation reaction with high activity and selectivity. A γ‐Al2O3 sample with abundant weak‐strength Lewis acid sites, together with a few medium‐strong‐strength acid sites, performs well with a high activity and considerable stability during the synthesis of methyl acrylate and acrylic acid.
文摘Acrylic acid(AA)and its ester,methyl acrylate(MA),were produced by a green one‐step aldol condensation reaction of dimethoxymethane and methyl acetate.The reaction was conducted over ZSM‐35 zeolites with different concentrations of Bronsted acid,which were prepared by the sodium ion‐exchange process with H‐form zeolite.The acidic property of HZSM‐35 was studied in detail through infrared experiments.About 51%of all bridging OH groups were distributed in cages,while 23%and 26%,respectively,were distributed in 10‐and 8‐ring channels.The catalytic performance was enhanced by a high concentration of Bronsted acid,indicating that Bronsted acid is an active site for the aldol condensation reaction.The ZSM‐35 zeolite possessing a concentration of Bronsted acid as high as 0.049 mmol/g demonstrated excellent performance with a MA+AA selectivity of up to 73%.
基金supported by the National Natural Science Foundation of China(91434101,91745108)the Ministry of Science and Technology of the People’s Republic of China(2017YFB0702900)~~
文摘A series of hexadecylphosphate acid(HDPA) terminated mixed-oxide nanoparticles have been investigated to catalyze the oxidation of toluene exclusive to benzaldehyde under mild conditions in an emulsion of toluene/water with the catalysts as stabilizers. With the HDPA-Fe2 O3/Al2 O3 as the basic catalyst, a series of transition metals, such as Mn, Co, Ni, Cu, Cr, Mo, V, and Ti, was respectively doped to the basic catalyst to modify the performance of the catalytic system, in expectation of influencing the mobility of the lattice oxygen species in the oxide catalysts. Under normally working conditions of the catalytic system, the nanoparticles of catalysts located themselves at the interface between the oil and water phases, constituting the Pickering emulsion. Both the doped iron oxide and its surface adsorbed hexadecylphosphate molecules were essential to the catalytic system for excellent performances with high toluene conversions as well as the exclusive selectivity to benzaldehyde. Under optimal conditions, ~83% of toluene conversion and >99% selectivity to benzaldehyde were obtained, using molecular oxygen as oxidant and HDPA-(Fe2 O3-Ni O)/Al2 O3 as the catalyst. This process is green and low cost to produce high quality benzaldehyde from O2 oxidation of toluene.
基金Supported by the National High Technology Research and Development Program of China (2008AA03Z3472294,2009AA302410)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2010)+1 种基金the Guangdong Province Sci & Tech Bureau (2006B12401006, 2008A080800024)the Chinese Universities Basic Research Founding
文摘The 0.4 nm molecular sieve supported Cu-Ni bimetal catalysts for direct synthesis of dimethyl carbonate (DMC) from CO 2 and CH 3 OH were prepared and investigated. The synthesized catalysts were fully characterized by BET, XRD (X-ray diffraction), TPR (temperature programmed reduction), IR (infra-red adsorption), NH 3-TPD (temperature programmed desorption) and CO 2-TPD (temperature programmed desorption) techniques. The results showed that the surface area of catalysts decreased with increasing metal content, and the metals as well as Cu-Ni alloy co-existed on the reduced catalyst surface. There existed interaction between metal and carrier, and moreover, metal particles affected obviously the acidity and basicity of carrier. The large amount of basic sites facilitated the activation of methanol to methoxyl species and their subsequent reaction with activated carbon dioxide. The catalysts were evaluated in a continuous tubular fixed-bed micro-gaseous reactor and the catalyst with bimetal loading of 20% (by mass) had best catalytic activities. Under the conditions of 393 K, 1.1 MPa, 5 h and gas space velocity of 510 h 1 , the selectivity and yield of DMC were higher than 86.0 % and 5.0 %, respectively.
文摘Effectiveness of hydrous manganese dioxide (δMnO2) adsorbing humic acid under different conditions and its subsequent effects on trihalomethane (THMs) formation have been studied. Humicacid removal increases with higher pH and residual TOC decreases from 3.63 mg/L to 1.68 mg/L with pH increasing from 5.5 to 8.5 at 3.0 mg/L δMnO2; δMnO2 exhibits good potential of removing humic acid and the adsorbing potential as high as 1 mg TOC/mg δMnO2 is achieved; the fractional reduction of humic acid with higher molecular weight is about 30% higher than that with lower molecular weight. δMnO2 adsorption obviously reduces subsequent THMs formation; more significant THMs formation reduction is observed for humic acid with higher molecular weight. δMnO2 adsorption is an important factor that contributes to humic acid removal and THMs formation reduction in permanganate pre-oxidation process.
基金supported by the National Natural Science Foundation of China(21476228,21676262)the Key Research Program of Frontier Sciences,CAS(QYZDB-SSW-JSC040)~~
文摘DNL-6, a silicoaluminophosphate(SAPO) molecular sieve with RHO topology, was hydrothermally synthesized using a new structure-directing agent(SDA), N,N'-dimethylethylenediamine. The obtained samples were characterized by X-ray diffraction, X-ray fluorescence, X-ray photoelectron spectroscopy, scanning electron microscopy, and N2 adsorption, which indicated that the synthesized DNL-6 s have high crystallinity and relatively high Si content ranging from 20% to 35%. Solid-state magic-angle-spinning(MAS) nuclear magnetic resonance(13 C, 29 Si, 27 Al, 31 P, and 27 Al multiple-quantum(MQ)) was conducted to investigate the status of the SDA and local atomic environment in the as-synthesized DNL-6. Thermal analysis revealed the presence of a large amount of amines in the DNL-6 crystals(about 4.4 SDAs per α-cage), which was the reason for the formation of DNL-6 with an ultrahigh Si content(36.4% Si per mole). Interestingly, DNL-6 exhibited excellent catalytic performance for methanol amination. More than 88% methanol conversion and 85% methylamine plus dimethylamine selectivity could be achieved due to the combined contribution of strong acid sites, suitable acid distribution, and narrow pore dimensions of DNL-6.
文摘H‐ZSM‐5 zeolite is a typical catalyst for methanol‐to‐olefins(MTO)conversion.Although the performance of zeolite catalysts for MTO conversion is related to the actual location of acid sites in the zeolite framework,the catalytic roles of the acid sites in different pore channels of the H‐ZSM‐5 zeolite are not well understood.In this study,the MTO reaction network,involving the aromatic cycle,alkene cycle,and aromatization process,and also the diffusion behavior of methanol feedstock and olefin and aromatic products at different acid sites in the straight channel,sinusoidal channel,and intersection cavity of H‐ZSM‐5 zeolite was comparatively investigated using density functional theory calculations and molecular dynamic simulations.The results indicated that the aromatic cycle and aromatization process occurred preferentially at the acid sites in the intersection cavities with a much lower energy barrier than that at the acid sites in the straight and sinusoidal channels.In contrast,the formation of polymethylbenzenes was significantly suppressed at the acid sites in the sinusoidal and straight channels,whereas the alkene cycle can occur at all three types of acid sites with similar energy barriers and probabilities.Consequently,the catalytic performance of H‐ZSM‐5 zeolite for MTO conversion,including activity and product selectivity,can be regulated properly through the purposive alteration of the acid site distribution,viz.,the location of Al in the zeolite framework.This study helps to elucidate the relation between the catalytic performance of different acid sites in the H‐ZSM‐5 zeolite framework for MTO conversion,which should greatly benefit the design of efficient catalyst for methanol conversion.
基金supported by the National Natural Science Foundation of China(21776259)Key Laboratory of Micro-Nano Powder and Advanced Energy Materials of Anhui Higher Education Institutes,Chizhou University~~
文摘In pursuit of low-cost direct formic acid fuel cells,tungsten carbide(WC)supported Pd catalyst is considered as an ideal candidate for efficient decomposition of formic acid due to low Pd utilization and excellent performance.Herein,different adsorption configurations and active sites of the intermediates,involved in the HCOOH decomposition,on WC(0001)-supported Pd monolayer(Pd/WC(0001))surface investigated by using density functional theory.The results reveal that trans-HCOOH,HCOO,cis-COOH,trans-COOH,HCO,CO,H2 O,OH and H exhibit chemisorption on Pd/WC(0001)surface,whereas cis-HCOOH and CO2 exhibit weak interactions with Pd/WC(0001)surface.In addition,the minimum energy pathways of HCOOH decomposition are analyzed to generate CO and CO2 due to the fracture of C–H,H–O and C–O bonds.The adsorbed HCOOH,HCOO,mH COO,cis-COOH and trans-COOH configurations exhibit dissociation rather than desorption.CO formation occurs through the decomposition of cis-COOH,trans-COOH and HCO,whereas the CO2 formation happens due to the decomposition of HCOO.It is found that the most favorable pathway for HCOOH decomposition on Pd/WC(0001)surface is HCOOH→HCOO→CO2,where the formation of CO2 from HCOO dehydrogenation determines the reaction rate.Overall,CO2 is the most dominant product of HCOOH decomposition on Pd/WC(0001)surface.The presence of WC,as monolayer Pd carrier,does not alter the catalytic behavior of Pd and significantly reduces the Pd utilization.
文摘At room temperature, dibenzoyl peroxide and pyridine N-oxide reacted with metallic copper powder in a mixed solvent(dichloromethane, trichloromethane and tetrahydrofuran), resulting in a binuclear copper(Ⅱ) complex. [Cu (C_5H_5NO)-(C_6H_5COO)_2]_2. The structure of the complex was characterized by elemental analyses.IR spectra and X-ray single crystal analysis. The crystal is triclinic, space group P1,with cell parameters . a= 9. 262(4) ,b= 10. 697(2) , c=10. 881 (3 )A , a=59. 60( 2 ),β= 74. 83 ( 3 ) .Y = 72. 80 ( 2 )°. V= 880. 0 A ̄3 . D_c = 1 . 5 20 g/cm ̄3 . Z = 1 . μ= 1 2. 7 cm-1, R=0. 044 ,R_w=0. 048 for 3477 reflections with I>3σ(I), M_r=805. 78. Each copper(Ⅱ) atom is coordinated by four bridging bidentate benzoate ligands and one pyridine M-oxide.
基金Supported by the National Natural Science Foundation of China(21176090,21136003)Team Project of Natural Science Foundation of Guangdong Province(S2011030001366)+1 种基金Science and Technology Foundation of Guangdong Province(2012B050600010)Fundamental Research Funds for the Central Universities(2013ZP0010)
文摘The amphiphilic copolymer poly(hydroxyethyl methacrylate-co-tert-butyl methacrylate) [P(HEMA-co-tBMA)] was synthesized by activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP), with the synthesis process monitored by in-situ infrared spectroscopy (IR). The molecular weight, chem- ical structure and characteristics of the copolymer were determined by 1H NMR, gas chromatography and gel permeation chromatography. The influences of various parameters on the living polymerization were explored. The molecular weight of the copolymer with narrow molecular weight distribution (Mw/Mn 〈 1.50) increases ap- proximately linearly with the monomer conversion, indicating a good control of polymerization. In the reaction temperature range from 50 ℃ to 90 ℃, the monomer conversion is higher at 60 ℃. The tBMA conversion rate decreases gradually with the increase of tBMA content, while the HEMA conversion is hardly affected by HEMA content. Weak polar solvent is more favorable to the polymerization compared to polar solvent. The molar ratio of reducing agent to catalyst has significant effect on the polymerization and increasing the amount of reducing agent will accelerate the reaction rate but causes wider molecular weight distribution. It is indicated that in-situ IR monitoring contributes to a more in-depth understanding of the mechanism of methacrylate monomer copolymerization.
基金the International Joint Research Project of Chongqing University and National University of Singapore (ARF-151-000-014-112) and the Basic and Applied Research Foundation of Chongqing University.
文摘Methylation in the bases of DNA is known to induce B-Z conformation change. In this work, molecular mechanics and normal mode analysis are used to probe how certain methylation affects the internal interactions and thermodynamic motions in the DNA double helixes in both B and Z conformations, and its implication to B-Z conformation change. By molecular modeling with Insight II, two cases involving cytosine C5 and guanine C8 methylation on both B and Z-form DNA duplex d(CGCGCG)2 are studied in comparison with the corresponding unmethylated duplexes. The internal interaction energies computed based on a molecular mechanics force field and the entropies due to internal motions computed according to a normal mode analysis are in fare agreement with respective observed thermodynamic quantities. The analysis on the computed individual energy terms suggests that the observed B-Z conformation change induced by methylation is primarily driven by enthalpic factors. A combination of changes in Van der Waals interaction, electrostatic interaction and hydrogen bonding likely contributes to the change of enthalpy that favors Z-conformation in the methylated states.
基金VI. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China ((No.20973067) and Guangdong-Natural Science Foundation (No.7005823), the Scientific Research Foundation for the Returned Overseas Chinese scholars, the State Education Ministry and the Foundation for Introduction of Talents by the Universities in Guangdong Province. Initial computation contributed by Mr. Xiting Zhang is gratefully acknowledged.
文摘Density functional theory (DFT) calculations are reported for the structures of neutral and zwitterionic glycine-(CHaOH)n where n=1-6. Initial geometries of the clusters of neutral and zwitterionic glycine with 1-6 methanol molecules are fully optimized at B3LYP/6-31+G^* level of theory. The lowest energy configurations are located and their hydrogen bond structures are analyzed. Theoretical prediction reveals that the methanols prefer to locate near the carboxylic acid group for the small clusters (n_〈3) with the neutral form while the configurations with the methanols bridging the acid and the amino group are favorite in the zwitterionic form clusters. When the number of the methanol molecules in the clusters reaches five and six, the two forms tend to be isoenergetic.