We do a new Li-ion battery evaluation research on the effects of cell resistance and polariza- tion on the energy loss in batteries based on thermal property and heat generation behavior of battery. Series of 18650 ce...We do a new Li-ion battery evaluation research on the effects of cell resistance and polariza- tion on the energy loss in batteries based on thermal property and heat generation behavior of battery. Series of 18650 cells with different capacities and electrode materials are evalu- ated by measuring input and output energy which change with charge-discharge time and current. Based on the results of these tests, we build a model of energy loss in cells' charge- discharge process, which include Joule heat and polarization heat impact factors. It was reported that Joule heat was caused by cell resistance, which included De-resistance and reaction resistance, and reaction resistance could not be easily obtained through routine test method. Using this new method, we can get the total resistance R and the polarization parameter U. The relationship between R, η, and temperature is also investigated in order to build a general model for series of different Li-ion batteries, and the research can be used in the performance evaluation, state of charge prediction and the measuring of consistency of the batteries.展开更多
In this work, noncovalent functionalization of multiwalled carbon nanotube (MWNT) with acridine orange (AO) by electropolymerization is studied. The obtained composite film is a viable alternate electrode material...In this work, noncovalent functionalization of multiwalled carbon nanotube (MWNT) with acridine orange (AO) by electropolymerization is studied. The obtained composite film is a viable alternate electrode material, non-toxic, chemical inert, not volatile, using to construct modified electrode. The new type modified electrode has both of unique properties of MWNT and poly acridine orange (POAO), can provide good sensitivity, low limits of detection, good response precision, and superb response stability.展开更多
文摘We do a new Li-ion battery evaluation research on the effects of cell resistance and polariza- tion on the energy loss in batteries based on thermal property and heat generation behavior of battery. Series of 18650 cells with different capacities and electrode materials are evalu- ated by measuring input and output energy which change with charge-discharge time and current. Based on the results of these tests, we build a model of energy loss in cells' charge- discharge process, which include Joule heat and polarization heat impact factors. It was reported that Joule heat was caused by cell resistance, which included De-resistance and reaction resistance, and reaction resistance could not be easily obtained through routine test method. Using this new method, we can get the total resistance R and the polarization parameter U. The relationship between R, η, and temperature is also investigated in order to build a general model for series of different Li-ion batteries, and the research can be used in the performance evaluation, state of charge prediction and the measuring of consistency of the batteries.
文摘In this work, noncovalent functionalization of multiwalled carbon nanotube (MWNT) with acridine orange (AO) by electropolymerization is studied. The obtained composite film is a viable alternate electrode material, non-toxic, chemical inert, not volatile, using to construct modified electrode. The new type modified electrode has both of unique properties of MWNT and poly acridine orange (POAO), can provide good sensitivity, low limits of detection, good response precision, and superb response stability.