Induction motor is used in many applications to drive an electromechanical system. Transients of the motor torque and speed are outlined by the inertia of rotating rotor. The paper deals with influence of rotor inerti...Induction motor is used in many applications to drive an electromechanical system. Transients of the motor torque and speed are outlined by the inertia of rotating rotor. The paper deals with influence of rotor inertia to transients of motor speed. The method of speed control measurement and experimental equipment is discussed. Simulation and experimental results are compared.展开更多
The stronglink with muhi-try function based on MEMS technology and the PC startup in authentication system have been designed and fabricated. The generation principle and structure of UQS code are introduced, which co...The stronglink with muhi-try function based on MEMS technology and the PC startup in authentication system have been designed and fabricated. The generation principle and structure of UQS code are introduced, which consists of two groups of metal counter-meshing gears, two pawl/ratchet mechanisms, two driving micromotors and two resetting micromotors. The energy-coupling element is a photoelectric sensor with a circular and notched plate. It is fabricated using the UV-LiGA process and precision mechanical engineering. The PC startup authentication system is controlled by BIOS program, which is written into the chip according with special format. The program in BIOS output signals controls the running of stronglink to finish the process of authentication. The device can run more than 10000 times before a stop. The driving voltage is 12 V, and the normal decoding time is 3 s.展开更多
This paper presents a sliding mode observer for sensorless operation of SRM (switched reluctance motor) drive. Design of such an observer depends mainly on the nonlinear model of SRM. In this technique, neither extr...This paper presents a sliding mode observer for sensorless operation of SRM (switched reluctance motor) drive. Design of such an observer depends mainly on the nonlinear model of SRM. In this technique, neither extra hardware nor huge memory space are not required but it only requires active phase measurements. Furthermore, PI (proportional integral) and adaptive FLPI (fuzzy logic PI) controllers are suggested to operate individually along with the SMO (sliding mode observer) to cover a full speed range of sensorless controller. Both controller schemes operate in PWM (pulse width modulation) control mode. The proposed observer is implemented and tested using a digital signal processor. All results obtained with both simulation and experimental investigations corroborate the superior performance of the adaptive fuzzy logic controller (FLPI) when compared with those of PI controller.展开更多
We propose a position sensorless control scheme for a four-switch,three-phase brushless DC motor drive,based on the zero crossing point detection of phase back-EMF voltages using newly defined error functions(EFs). Th...We propose a position sensorless control scheme for a four-switch,three-phase brushless DC motor drive,based on the zero crossing point detection of phase back-EMF voltages using newly defined error functions(EFs). The commutation in-stants are 30° after detected zero crossing points of the EFs. Developed EFs have greater magnitude rather than phase or line voltages so that the sensorless control can work at a lower speed range. Moreover,EFs have smooth transitions around zero voltage level that reduces the commutation errors. EFs are derived from the filtered terminal voltages vao and vbo of two low-pass filters,which are used to eliminate high frequency noises for calculation of the average terminal voltages. The feasibility of the proposed sensorless control is demonstrated by simulation and experimental results.展开更多
文摘Induction motor is used in many applications to drive an electromechanical system. Transients of the motor torque and speed are outlined by the inertia of rotating rotor. The paper deals with influence of rotor inertia to transients of motor speed. The method of speed control measurement and experimental equipment is discussed. Simulation and experimental results are compared.
基金Sponsored by the National High Technology Research and Development Program (863 ) of China (Grant No.2003AA404210, 2005AA404250,2003AA404210, 2006AA01Z443)
文摘The stronglink with muhi-try function based on MEMS technology and the PC startup in authentication system have been designed and fabricated. The generation principle and structure of UQS code are introduced, which consists of two groups of metal counter-meshing gears, two pawl/ratchet mechanisms, two driving micromotors and two resetting micromotors. The energy-coupling element is a photoelectric sensor with a circular and notched plate. It is fabricated using the UV-LiGA process and precision mechanical engineering. The PC startup authentication system is controlled by BIOS program, which is written into the chip according with special format. The program in BIOS output signals controls the running of stronglink to finish the process of authentication. The device can run more than 10000 times before a stop. The driving voltage is 12 V, and the normal decoding time is 3 s.
文摘This paper presents a sliding mode observer for sensorless operation of SRM (switched reluctance motor) drive. Design of such an observer depends mainly on the nonlinear model of SRM. In this technique, neither extra hardware nor huge memory space are not required but it only requires active phase measurements. Furthermore, PI (proportional integral) and adaptive FLPI (fuzzy logic PI) controllers are suggested to operate individually along with the SMO (sliding mode observer) to cover a full speed range of sensorless controller. Both controller schemes operate in PWM (pulse width modulation) control mode. The proposed observer is implemented and tested using a digital signal processor. All results obtained with both simulation and experimental investigations corroborate the superior performance of the adaptive fuzzy logic controller (FLPI) when compared with those of PI controller.
文摘We propose a position sensorless control scheme for a four-switch,three-phase brushless DC motor drive,based on the zero crossing point detection of phase back-EMF voltages using newly defined error functions(EFs). The commutation in-stants are 30° after detected zero crossing points of the EFs. Developed EFs have greater magnitude rather than phase or line voltages so that the sensorless control can work at a lower speed range. Moreover,EFs have smooth transitions around zero voltage level that reduces the commutation errors. EFs are derived from the filtered terminal voltages vao and vbo of two low-pass filters,which are used to eliminate high frequency noises for calculation of the average terminal voltages. The feasibility of the proposed sensorless control is demonstrated by simulation and experimental results.