Motor current signature analysis provides good results in laboratory environment. In real life situation, electrical machines usually share voltage and current from common terminals and would easily influence each oth...Motor current signature analysis provides good results in laboratory environment. In real life situation, electrical machines usually share voltage and current from common terminals and would easily influence each other. This will result in considerable amount of interferences among motors and doubt in identity of fault signals. Therefore, estimating the mutual influence of motors will help identifying the original signal from the environmental noise. This research aims at modelling the propagation of signals that are caused by faults of induction motors in power networks. Estimating the propagation pattern of fault signal leads to a method to discriminate and identify the original source of major events in industrial networks. Simulation results show that source of fault could be identified using this approach with a higher certainty than anticipated output coming of any individual diagnosis.展开更多
文摘Motor current signature analysis provides good results in laboratory environment. In real life situation, electrical machines usually share voltage and current from common terminals and would easily influence each other. This will result in considerable amount of interferences among motors and doubt in identity of fault signals. Therefore, estimating the mutual influence of motors will help identifying the original signal from the environmental noise. This research aims at modelling the propagation of signals that are caused by faults of induction motors in power networks. Estimating the propagation pattern of fault signal leads to a method to discriminate and identify the original source of major events in industrial networks. Simulation results show that source of fault could be identified using this approach with a higher certainty than anticipated output coming of any individual diagnosis.