混合储能系统具有储能容量大、调节能力强等优点,有助于提高综合能源系统(integrated energy system,IES)的需求响应能力。首先,构建了一种电-氢-热混合储能系统(electric-hydrogen-thermal hybrid energy storage system,EHT-HESS),其...混合储能系统具有储能容量大、调节能力强等优点,有助于提高综合能源系统(integrated energy system,IES)的需求响应能力。首先,构建了一种电-氢-热混合储能系统(electric-hydrogen-thermal hybrid energy storage system,EHT-HESS),其中采用电解槽(electrolytic cell,EC)、蒸气重整反应(steam methane reforming,SMR)装置、储氢、热电联产氢燃料电池(hydrogen fuel cell,HFC)设备,实现电、气向氢能的转换,以及以氢能作为中间模态的“制氢-储氢-放氢/电/热”功能。其次,建立考虑EHT-HESS的IES需求响应策略优化模型,其中考虑IES响应电价和气价,同时根据富余风电量,进行购电、购气、用电、用热、用氢等策略决策的综合需求响应(integrated demand response,IDR)行为;并采用信息间隙决策理论(information gap decision theory,IGDT)计入概率分布未知的风电严重不确定性,采用基于综合范数的分布鲁棒优化(distributionally robust optimization,DRO)方法计入概率分布不完备的电价严重不确定性。最后,算例验证了模型和方法的合理性及有效性,并表明IES装设热电联产HFC构建EHT-HESS可实现氢能向电能与热能的转换,有助于增加风电消纳量,增加IDR决策的鲁棒性。展开更多
This paper proposed the reclosing method in distribution system with battery energy storage system(BESS)using wavelet transform(WT).The proposed method performs the WT of load current and then calculates the absolute ...This paper proposed the reclosing method in distribution system with battery energy storage system(BESS)using wavelet transform(WT).The proposed method performs the WT of load current and then calculates the absolute value of slope of detail coefficient.The mother wavelet used is db4of level6.The fault clearing is detected using the rapid increase of this value.After the detection of fault clearing,the reclosing is performed.To verify the proposed method,various simulations according to the fault clearing times,fault resistances,and fault lengths are performed using EMTP.The simulation results show that fault clearing can be detected using proposed absolute value of slope of detail coefficient and hence the reclosing can be performed successfully.展开更多
An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral config...An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral configuration. The structure of the flow was examined via three dimensional iso surfaces of the Q criterion. Vortical cores were observed on the leeward surface of the balloons. The swirling tube flows generated by these vortical cores were depicted through three dimensional path lines. The flow dynamics were visualized via time series snapshots of two dimensional vorticity contours perpendicular to the flow direction; revealing the turbulent swinging motions of the aforementioned shedding-swirling tube flows. The time history of the hydrodynamic loading was presented in terms of lift and drag coefficients. Drag coefficient of each individual balloon in the floral configuration was smaller than that of a single balloon. It was found that the total drag coefficient of the floral unit of three touching balloons, i.e. summation of the drag coefficients of the balloons, is not too much larger than that of a single balloon whereas it provides three times the storage capacity. In addition to its practical significance in designing appropriate foundation and supports, the instantaneous hydrodynamic loading was used to determine the frequency of the turbulent swirling-swinging motions of the shedding vortex tubes; the Strouhal number was found to be larger than that of a single sphere at the same Reynolds number.展开更多
This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emerg...This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range.展开更多
For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a mult...For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a multi-objective optimization scheduling strategy considering energy storage participation is proposed.Firstly,the new energy power system model is established,and the PP scenario generation and reduction frame based on the autoregressive moving average model and Kantorovich-distance is proposed.Then,based on the optimization goal of the system operation cost minimization and the PP output power consumption maximization,the multi-objective optimization scheduling model is established.Finally,the simulation results show that introducing energy storage into the system can effectively reduce the system operation cost and improve the utilization efficiency of PP.展开更多
文摘This paper proposed the reclosing method in distribution system with battery energy storage system(BESS)using wavelet transform(WT).The proposed method performs the WT of load current and then calculates the absolute value of slope of detail coefficient.The mother wavelet used is db4of level6.The fault clearing is detected using the rapid increase of this value.After the detection of fault clearing,the reclosing is performed.To verify the proposed method,various simulations according to the fault clearing times,fault resistances,and fault lengths are performed using EMTP.The simulation results show that fault clearing can be detected using proposed absolute value of slope of detail coefficient and hence the reclosing can be performed successfully.
文摘An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral configuration. The structure of the flow was examined via three dimensional iso surfaces of the Q criterion. Vortical cores were observed on the leeward surface of the balloons. The swirling tube flows generated by these vortical cores were depicted through three dimensional path lines. The flow dynamics were visualized via time series snapshots of two dimensional vorticity contours perpendicular to the flow direction; revealing the turbulent swinging motions of the aforementioned shedding-swirling tube flows. The time history of the hydrodynamic loading was presented in terms of lift and drag coefficients. Drag coefficient of each individual balloon in the floral configuration was smaller than that of a single balloon. It was found that the total drag coefficient of the floral unit of three touching balloons, i.e. summation of the drag coefficients of the balloons, is not too much larger than that of a single balloon whereas it provides three times the storage capacity. In addition to its practical significance in designing appropriate foundation and supports, the instantaneous hydrodynamic loading was used to determine the frequency of the turbulent swirling-swinging motions of the shedding vortex tubes; the Strouhal number was found to be larger than that of a single sphere at the same Reynolds number.
文摘This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range.
基金Science and Technology Project of State Grid Corporation of China(No.SGGSKY00FJJS1800140)。
文摘For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a multi-objective optimization scheduling strategy considering energy storage participation is proposed.Firstly,the new energy power system model is established,and the PP scenario generation and reduction frame based on the autoregressive moving average model and Kantorovich-distance is proposed.Then,based on the optimization goal of the system operation cost minimization and the PP output power consumption maximization,the multi-objective optimization scheduling model is established.Finally,the simulation results show that introducing energy storage into the system can effectively reduce the system operation cost and improve the utilization efficiency of PP.