Multifunctional devices integrated with electrochromism and energy storage or energy production functions are attractive because these devices can be used as an effective approach to address the energy crisis and envi...Multifunctional devices integrated with electrochromism and energy storage or energy production functions are attractive because these devices can be used as an effective approach to address the energy crisis and environmental pollution in society today. In this review, we explain the operation principles of electrochromic energy storage devices including electrochromic supercapacitors,electrochromic batteries, and the photoelectrochromic devices. Furthermore, the material candidates and structure types of these multifunctional devices are discussed in detail. The major challenges of these devices along with a further outlook are highlighted at the end.展开更多
On-chip microsupercapacitors (MSCs) compatible with on-chip geometries of integrated circuits can be used either as a separate power supply in microelectronic devices or as an energy storage or energy receptor acces...On-chip microsupercapacitors (MSCs) compatible with on-chip geometries of integrated circuits can be used either as a separate power supply in microelectronic devices or as an energy storage or energy receptor accessory unit. In this work, we report the fabrication of flexible two-dimensional Ni(OH)2 nanoplates-based MSCs, which achieved a specific capacitance of 8.80 F/cm^3 at the scan rates of 100 mV/s, losing only 0.20% of its original value after 10,000 charge/discharge cycles. Besides, the MSCs reached an energy density of 0.59 mWh/cm^3 and a power density up to 1.80 W/cm^3, which is comparable to traditional carbon-based devices. The flexible MSCs exhibited good electrochemical stability when subjected to bending at various conditions, illustrating the promising application as electrodes for wearable energy storage.展开更多
As one of the most promising next-generation energy storage devices,the lithium-metal battery has been extensively investigated.However,safety issues and undesired lithium dendrite growth hinder its development.The ap...As one of the most promising next-generation energy storage devices,the lithium-metal battery has been extensively investigated.However,safety issues and undesired lithium dendrite growth hinder its development.The application of solid-state electrolytes has attracted increasing attention as they can solve safety issues and show great potential to inhibit the growth of lithium dendrites.Polyethylene oxide(PEO)-based electrolytes are very promising due to their enhanced safety and excellent flexibility.However,they suffer from low ionic conductivity at room temperature and cannot effectively inhibit lithium dendrites at high temperatures due to the intrinsic semicrystalline properties and poor mechanical strength.In this work,a novel coral-like Li_(6.25)Al_(0.25)La_(3)Zr_(2)O_(12)(C-LALZO)is synthesized to serve as an active ceramic filler in PEO.The PEO with LALZO coral(PLC)exhibits increased ionic conductivity and mechanical strength,which leads to uniform deposition/stripping of lithium metal.The Li symmetric cells with PLC do not cause a short circuit after cycling for 1500 h at 60℃.The assembled LiFePO_(4)/PLC/Li batteries display excellent cycling stability at both 60 and 50℃.This work reveals that the electrochemical properties of the composite electrolyte can be effectively improved by tuning the microstructure of the filler,such as the C-LALZO architecture.展开更多
With the proliferation of energy storage and power applications, electric vehicles particularly, solid-state batteries are considered as one of the most promising strategies to address the ever-increasing safety conce...With the proliferation of energy storage and power applications, electric vehicles particularly, solid-state batteries are considered as one of the most promising strategies to address the ever-increasing safety concern and high energy demand of power devices. Here, we demonstrate the Al4B2O9 nanorods-modified poly(ethylene oxide) (PEO)-based solid polymer electrolyte (ASPE) with high ionic conductivity, wide electrochemical window, decent mechanical property and nonflammable performance. Specifically, because of the longer-range ordered Li+ transfer channels conducted by the interaction between Al4B2O9 nanorods and PEO, the optimal ASPE (ASPE-1) shows excellent ionic conductivity of 4.35×10^−1 and 3.1×10^−1 S cm^−1 at 30 and 60℃, respectively. It also has good electrochemical stability at 60℃ with a decomposition voltage of 5.1 V. Besides, the assembled LiFePO4//Li cells show good cycling performance, delivering 155 mA h g−1 after 300 cycles at 1 C under 60℃, and present excellent low temperature adaptability, retaining over 125 mA h g^−1 after 90 cycles at 0.2 C under 30℃. These results verify that the addition of Al4B2O9 nanorods can effectively promote the integrated performance of solid polymer electrolyte.展开更多
Flexible energy storage devices are becoming indispensable new elements of wearable electronics to improve our living qualities.As the main energy storage devices,lithium-ion batteries(LIBs)are gradually approaching t...Flexible energy storage devices are becoming indispensable new elements of wearable electronics to improve our living qualities.As the main energy storage devices,lithium-ion batteries(LIBs)are gradually approaching their theoretical limit in terms of energy density.In recent years,lithium metal batteries(LMBs)with metallic Li as the anode are revived due to the extremely high energy density,and are considered to be one of the ideal alternatives for the next generation of flexible power supply.In this review,key technologies and scientific problems to be overcome for flexible LMBs are discussed.Then,the recent advances in flexible LMBs,including the design of flexible Li metal anodes,electrolytes,cathodes and interlayers,are summarized.In addition,we have summed up the research progress of flexible device configurations,and emphasized the importance of flexibility evaluation and functionality integration to ensure the wearing safety in complex environment.Finally,the challenges and future development of flexible LMBs are summarized and prospected.展开更多
Flexible and Personalizable battery is a promising candidate for energy storage, but suffers from the weldablity and large-scale producibility of the electrode. To address the issues, we design a nickel foam catalyzed...Flexible and Personalizable battery is a promising candidate for energy storage, but suffers from the weldablity and large-scale producibility of the electrode. To address the issues, we design a nickel foam catalyzed electroless deposition (NFED) derived 3D-metal-pattern embroidered electrodes. This is the first attempt to utilize this type of electrode in battery field. It is found that the current collector can be embroidered on any selected areas of any complex-shape electrodes, with high controllability and economical feasibility. As a result, the electronic conductivity of the flexible electrodes can be improved by nearly one order of magnitude, which can be easily and firmly weldded to the metal tab using the industry generic ultrasonic heating process. The embroidered electrodes could substantially promote the electrochemical performance under bending deformation, with both Li-S and Li-Li FePO4batteries as the models. This innovation is also suitable to embroider all the VIII group elements on any electrodes with personalized shapes, which is widely attractive for the development of next generation flexible and personalizable energy storage devices.展开更多
基金the National Natural Science Foundation of China (51572058, 91216123, 51174063, 51502057)the Natural Science Foundation of Heilongjiang Province (E201436)+1 种基金the International Science & Technology Cooperation Program of China(2013DFR10630, 2015DFE52770)the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP 20132302110031)
文摘Multifunctional devices integrated with electrochromism and energy storage or energy production functions are attractive because these devices can be used as an effective approach to address the energy crisis and environmental pollution in society today. In this review, we explain the operation principles of electrochromic energy storage devices including electrochromic supercapacitors,electrochromic batteries, and the photoelectrochromic devices. Furthermore, the material candidates and structure types of these multifunctional devices are discussed in detail. The major challenges of these devices along with a further outlook are highlighted at the end.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (No. 61377033).
文摘On-chip microsupercapacitors (MSCs) compatible with on-chip geometries of integrated circuits can be used either as a separate power supply in microelectronic devices or as an energy storage or energy receptor accessory unit. In this work, we report the fabrication of flexible two-dimensional Ni(OH)2 nanoplates-based MSCs, which achieved a specific capacitance of 8.80 F/cm^3 at the scan rates of 100 mV/s, losing only 0.20% of its original value after 10,000 charge/discharge cycles. Besides, the MSCs reached an energy density of 0.59 mWh/cm^3 and a power density up to 1.80 W/cm^3, which is comparable to traditional carbon-based devices. The flexible MSCs exhibited good electrochemical stability when subjected to bending at various conditions, illustrating the promising application as electrodes for wearable energy storage.
基金supported by the School Research Startup Expenses of Harbin Institute of Technology(Shenzhen)(DD29100027)the National Natural Science Foundation of China(52002094)+2 种基金China Postdoctoral Science Foundation(2019M661276)Guangdong Basic and AppliedBasic Research Foundation(2019A1515110756)the High-level Talents Discipline Construction Fund of Shandong University(31370089963078)。
文摘As one of the most promising next-generation energy storage devices,the lithium-metal battery has been extensively investigated.However,safety issues and undesired lithium dendrite growth hinder its development.The application of solid-state electrolytes has attracted increasing attention as they can solve safety issues and show great potential to inhibit the growth of lithium dendrites.Polyethylene oxide(PEO)-based electrolytes are very promising due to their enhanced safety and excellent flexibility.However,they suffer from low ionic conductivity at room temperature and cannot effectively inhibit lithium dendrites at high temperatures due to the intrinsic semicrystalline properties and poor mechanical strength.In this work,a novel coral-like Li_(6.25)Al_(0.25)La_(3)Zr_(2)O_(12)(C-LALZO)is synthesized to serve as an active ceramic filler in PEO.The PEO with LALZO coral(PLC)exhibits increased ionic conductivity and mechanical strength,which leads to uniform deposition/stripping of lithium metal.The Li symmetric cells with PLC do not cause a short circuit after cycling for 1500 h at 60℃.The assembled LiFePO_(4)/PLC/Li batteries display excellent cycling stability at both 60 and 50℃.This work reveals that the electrochemical properties of the composite electrolyte can be effectively improved by tuning the microstructure of the filler,such as the C-LALZO architecture.
基金financially supported by the National Natural Science Foundation of China (51804344)the Huxiang Youth Talent Support Program (2019RS2002)+2 种基金the Innovation and Entrepreneurship Project of Hunan Province,China (2018GK5026)the Innovation-Driven Project of Central South University (2020CX027)Guangdong Yang Fan Plan for Postdoctor Program
文摘With the proliferation of energy storage and power applications, electric vehicles particularly, solid-state batteries are considered as one of the most promising strategies to address the ever-increasing safety concern and high energy demand of power devices. Here, we demonstrate the Al4B2O9 nanorods-modified poly(ethylene oxide) (PEO)-based solid polymer electrolyte (ASPE) with high ionic conductivity, wide electrochemical window, decent mechanical property and nonflammable performance. Specifically, because of the longer-range ordered Li+ transfer channels conducted by the interaction between Al4B2O9 nanorods and PEO, the optimal ASPE (ASPE-1) shows excellent ionic conductivity of 4.35×10^−1 and 3.1×10^−1 S cm^−1 at 30 and 60℃, respectively. It also has good electrochemical stability at 60℃ with a decomposition voltage of 5.1 V. Besides, the assembled LiFePO4//Li cells show good cycling performance, delivering 155 mA h g−1 after 300 cycles at 1 C under 60℃, and present excellent low temperature adaptability, retaining over 125 mA h g^−1 after 90 cycles at 0.2 C under 30℃. These results verify that the addition of Al4B2O9 nanorods can effectively promote the integrated performance of solid polymer electrolyte.
基金financially supported by the National Natural Science Foundation of China(U1804138,U1904195,and 22104079)the Program for Science&Technology Innovative Research Team(20IRTSTHN007)+2 种基金the Innovation Talents(22HASTIT028)Key Scientific Research(22A150052)in the Universities of Henan Provincethe Key Science and Technology Research of Henan Province(212102210654)。
文摘Flexible energy storage devices are becoming indispensable new elements of wearable electronics to improve our living qualities.As the main energy storage devices,lithium-ion batteries(LIBs)are gradually approaching their theoretical limit in terms of energy density.In recent years,lithium metal batteries(LMBs)with metallic Li as the anode are revived due to the extremely high energy density,and are considered to be one of the ideal alternatives for the next generation of flexible power supply.In this review,key technologies and scientific problems to be overcome for flexible LMBs are discussed.Then,the recent advances in flexible LMBs,including the design of flexible Li metal anodes,electrolytes,cathodes and interlayers,are summarized.In addition,we have summed up the research progress of flexible device configurations,and emphasized the importance of flexibility evaluation and functionality integration to ensure the wearing safety in complex environment.Finally,the challenges and future development of flexible LMBs are summarized and prospected.
基金This work was financially supported by the National Natural Science Foundation of China(51673199,51677176)Youth Innovation Promotion Association of CAS(2015148)+1 种基金Innovation Foundation of DICP(ZZBS201615,ZZBS201708)Dalian Science and Technology Star Program(2016RQ026).
文摘Flexible and Personalizable battery is a promising candidate for energy storage, but suffers from the weldablity and large-scale producibility of the electrode. To address the issues, we design a nickel foam catalyzed electroless deposition (NFED) derived 3D-metal-pattern embroidered electrodes. This is the first attempt to utilize this type of electrode in battery field. It is found that the current collector can be embroidered on any selected areas of any complex-shape electrodes, with high controllability and economical feasibility. As a result, the electronic conductivity of the flexible electrodes can be improved by nearly one order of magnitude, which can be easily and firmly weldded to the metal tab using the industry generic ultrasonic heating process. The embroidered electrodes could substantially promote the electrochemical performance under bending deformation, with both Li-S and Li-Li FePO4batteries as the models. This innovation is also suitable to embroider all the VIII group elements on any electrodes with personalized shapes, which is widely attractive for the development of next generation flexible and personalizable energy storage devices.