期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Ni-Fe/Ti和Ni-Fe-S/Ti的制备及其电催化水分解性能 被引量:7
1
作者 陆杭烁 何小波 +1 位作者 银凤翔 李国儒 《电化学》 CAS CSCD 北大核心 2020年第1期136-147,共12页
以钛网为基底,采用电沉积法制备了Ni-Fe/Ti析氧电极,然后将得到的Ni-Fe/Ti电极通过固相硫化制备了Ni-Fe-S/Ti析氢电极.分别考察了电沉积液中Ni2+/Fe3+离子摩尔浓度比和硫脲加入量对Ni-Fe/Ti和Ni-Fe-S/Ti结构和电化学性能的影响.结果表明... 以钛网为基底,采用电沉积法制备了Ni-Fe/Ti析氧电极,然后将得到的Ni-Fe/Ti电极通过固相硫化制备了Ni-Fe-S/Ti析氢电极.分别考察了电沉积液中Ni2+/Fe3+离子摩尔浓度比和硫脲加入量对Ni-Fe/Ti和Ni-Fe-S/Ti结构和电化学性能的影响.结果表明,随着电沉积液中Ni2+含量的增加,Ni-Fe/Ti电极析氧性能先增强后减弱,Ni9Fe1/Ti电极具有最好的析氧性能;随着硫脲加入量的增加,Ni-Fe-S/Ti电极析氢性能呈现先增强后减弱的趋势,Ni9Fe1S0.25/Ti电极具有最好的析氢性能.在50 mA·cm-2下,Ni9Fe1/Ti电极的析氧过电位为280 m V,Ni9Fe1S0.25/Ti电极的析氢过电位为269 mV,且均具有很好的稳定性.将Ni9Fe1/Ti与Ni9Fe1S0.25/Ti分别作为阳极和阴极进行电催化全水分解,电流密度达到50 mA·cm-2所需电势仅1.69 V,表现出很好的全水解催化性能. 展开更多
关键词 镍铁氢氧化物 镍铁硫化物 氧气析出反应 氢气析出反应 电催化全水分解
下载PDF
Recent advances in one-dimensional nanostructures for energy electrocatalysis 被引量:4
2
作者 Ping Li Wei Chen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第1期4-22,共19页
Catalysts play decisive roles in determining the energy conversion efficiencies of energy devices.Up to now,various types of nanostructured materials have been studied as advanced electrocatalysts.This review highligh... Catalysts play decisive roles in determining the energy conversion efficiencies of energy devices.Up to now,various types of nanostructured materials have been studied as advanced electrocatalysts.This review highlights the application of one‐dimensional(1D)metal electrocatalysts in energy conversion,focusing on two important reaction systems-direct methanol fuel cells and water splitting.In this review,we first give a broad introduction of electrochemical energy conversion.In the second section,we summarize the recent significant advances in the area of 1D metal nanostructured electrocatalysts for the electrochemical reactions involved in fuel cells and water splitting systems,including the oxygen reduction reaction,methanol oxidation reaction,hydrogen evolution reaction,and oxygen evolution reaction.Finally,based on the current studies on 1D nanostructures for energy electrocatalysis,we present a brief outlook on the research trend in 1D nanoelectrocatalysts for the two clean electrochemical energy conversion systems mentioned above. 展开更多
关键词 One‐dimensional nanostructure Fuel cell Water splitting ELECTROCATALYSIS Energy conversion
下载PDF
Hierarchical coral-like FeNi(OH)_x/Ni via mild corrosion of nickel as an integrated electrode for efficient overall water splitting 被引量:2
3
作者 Rui Xiang Cheng Tong +5 位作者 Yao Wang Lishan Peng Yao Nie Li Li Xun Huang Zidong Wei 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第11期1736-1745,共10页
Efficient,stable,and noble‐metal‐free electrocatalysts for both the oxygen evolution reaction and the hydrogen evolution reaction are highly imperative for the realization of low‐cost commercial water‐splitting el... Efficient,stable,and noble‐metal‐free electrocatalysts for both the oxygen evolution reaction and the hydrogen evolution reaction are highly imperative for the realization of low‐cost commercial water‐splitting electrolyzers.Herein,a cost‐effective and ecofriendly strategy is reported to fabricate coral‐like FeNi(OH)x/Ni as a bifunctional electrocatalyst for overall water splitting in alkaline media.With the assistance of mild corrosion of Ni by Fe(NO3)3,in situ generated FeNi(OH)x nanosheets are intimately attached on metallic coral‐like Ni.Integration of these nanosheets with the electrodeposited coral‐like Ni skeleton and the supermacroporous Ni foam substrate forms a binder‐free hierarchical electrode,which is beneficial for exposing catalytic active sites,accelerating mass transport,and facilitating the release of gaseous species.In 1.0 mol L^-1 KOH solution,a symmetric electrolyzer constructed with FeNi(OH)x/Ni as both the anode and the cathode exhibits an excellent activity with an applied potential difference of 1.52 V at 10 mA cm^-2,which is superior to that of an asymmetric electrolyzer constructed with the state‐of‐the‐art RuO2‐PtC couple(applied potential difference of 1.55 V at 10 mA cm^-2).This work contributes a facile and reliable strategy for manufacturing affordable,practical,and promising water‐splitting devices. 展开更多
关键词 Overall water splitting Electro‐catalysis Fe/Ni hydroxide Alkaline electrolyser Integrate electrode
下载PDF
Time-resolved infrared spectroscopic investigation of Ga_(2)O_(3) photocatalysts loaded with Cr_(2)O_(3)-Rh cocatalysts for photocatalytic water splitting 被引量:1
4
作者 Qian Ding Tao Chen +2 位作者 Zheng Li Zhaochi Feng Xiuli Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第5期808-816,共9页
Investigation of the charge dynamics and roles of cocatalysts is crucial for understanding the reaction of photocatalytic water splitting on semiconductor photocatalysts.In this work,the dynamics of photogenerated ele... Investigation of the charge dynamics and roles of cocatalysts is crucial for understanding the reaction of photocatalytic water splitting on semiconductor photocatalysts.In this work,the dynamics of photogenerated electrons in Ga_(2)O_(3) loaded with Cr_(2)O_(3)-Rh cocatalysts was studied using time-resolved mid-infrared spectroscopy.The structure of these Cr_(2)O_(3)-Rh cocatalysts was identified with high-resolution transmission electron microscopy and CO adsorption Fourier-transform infrared spectroscopy,as Rh particles partly covered with Cr_(2)O_(3).The decay dynamics of photogenerated electrons reveals that only the electrons trapped by the Rh particles efficiently participate in the H2 evolution reaction.The loaded Cr_(2)O_(3) promotes electron transfer from Ga_(2)O_(3) to Rh,which accelerates the electron-consuming reaction for H2 evolution.Based on these observations,a photocatalytic water-splitting mechanism for Cr_(2)O_(3)-Rh/Ga_(2)O_(3) photocatalysts has been proposed.The elucidation of the roles of the Cr_(2)O_(3)-Rh cocatalysts aids in further understanding the reaction mechanisms of photocatalytic water splitting and guiding the development of improved photocatalysts. 展开更多
关键词 Photocatalysis Time-resolved mid-infrared spectroscopy Carrier dynamics Overall water splitting COCATALYST Gallium oxide
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部