Relationship between the activity for photocatalytic H_(2)O overall splitting(HOS)and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram,and specially the d^(10)electro...Relationship between the activity for photocatalytic H_(2)O overall splitting(HOS)and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram,and specially the d^(10)electronic configuration in valley bottom exhibits inert activity,which seriously fetters the development of catalytic materials with great potentials.Herein,In d^(10)electronic configuration of In_(2)O_(3)was activated by phosphorus atoms replacing its lattice oxygen to regulate the collocation of the ascended In 5p-band(Inɛ5p)and descended O 2p-band(Oɛ2p)centers as efficient active sites for chemisorption to*OH and*H during forward HOS,respectively,along with a declined In 4d-band center(Inɛ4d)to inhibit its backward reaction.A stable STH efficiency of 2.23%under AM 1.5 G irradiation at 65°C has been obtained over the activated d^(10)electronic configuration with a lowered activation energy for H_(2)evolution,verified by femtosecond transient absorption spectroscopy,in situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations of dynamics.These findings devote to activating d^(10)electronic configuration for resolving the reaction energy barrier and dynamical bottleneck of forward HOS,which expands the exploration of high-efficiency catalytic materials.展开更多
A comprehensive understanding of the role of the electrocatalyst in photoelectrochemical(PEC)water splitting is central to improving its performance.Herein,taking the Si-based photoanodes(n^(+)p-Si/SiO_(x)/Fe/FeOx/MOO...A comprehensive understanding of the role of the electrocatalyst in photoelectrochemical(PEC)water splitting is central to improving its performance.Herein,taking the Si-based photoanodes(n^(+)p-Si/SiO_(x)/Fe/FeOx/MOOH,M=Fe,Co,Ni)as a model system,we investigate the effect of the transition-metal electrocatalysts on the oxygen evolution reaction(OER).Among the photoanodes with the three different electrocatalysts,the best OER activity,with a low-onset potential of∼1.01 VRHE,a high photocurrent density of 24.10 mA cm^(-2)at 1.23 VRHE,and a remarkable saturation photocurrent density of 38.82 mA cm^(-2),was obtained with the NiOOH overlayer under AM 1.5G simulated sunlight(100 mW cm^(-2))in 1 M KOH electrolyte.The optimal interfacial engineering for electrocatalysts plays a key role for achieving high performance because it promotes interfacial charge transport,provides a larger number of surface active sites,and results in higher OER activity,compared to other electrocatalysts.This study provides insights into how electrocatalysts function in water-splitting devices to guide future studies of solar energy conversion.展开更多
The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes(GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic...The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes(GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic deposition and the surface morphologies and compositions of electrodes were determined by energy-dispersive X-ray(EDX) and scanning electron microscopy(SEM). Cyclic voltammetry and chronoamperometric methods were employed to characterize the oxidation process and its kinetics. Voltammetric studies exhibit one pair of well-defined redox peaks, which is ascribed to the redox process of the nickel and followed by the greatly enhanced current response of the anodic peak in the presence of contraflam and a decrease in the corresponding cathodic current peak. This indicates that the immobilized redox mediator on the electrode surface was oxidized contraflam via an electrocatalytic mechanism. The catalytic currents increased linearly with the concentration of contraflam in the range of 0.25– 1.5 mmol/L. The anodic peak currents were linearly proportional to the square root of scan rate. This behaviour is the characteristic of a diffusion-controlled process. The determination of contraflam in capsules is applied satisfactorily by modified electrode.展开更多
A catalyst is a substance that alters the rate of a reaction. The process of catalysis is essential to the modem day manufacturing industry, mainly in FCC (Fluid Catalytic Cracking) process units. However, long-term...A catalyst is a substance that alters the rate of a reaction. The process of catalysis is essential to the modem day manufacturing industry, mainly in FCC (Fluid Catalytic Cracking) process units. However, long-term exploitation of oil and gas processing catalysts leads to formation of carbon- and sulfur-containing structures of coke and dense products on the catalyst surface. They block reactive catalyst sites and reduce the catalytic activity. The main advantage of radiation processing by EB (electron beam) and gamma rays is chain cracking reaction in crude oil. Otherwise, under exposure to ionize radiation, considerable structure modification of equilibrium silica-alumina catalyst from FCC process may occur, in addition to the removal of impurities. The conditions applied in the irradiation range (20-150 kGy) of gamma rays and EB were not sufficient to alter the structure of the catalyst, whether for removal of the contaminant nickel, a major contaminant of the FCC catalyst, either to rupture of the crystalline structure either for the future reutilization of chemical elements. ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy and EDXRFS (Energy Dispersive X-Ray Fluorescence Spectrometry) analysis were used to characterize and evaluate effects of radiation processing on equilibrium catalysts purification. To evaluate and comprehend the reactive catalyst sites, SEM (Scanning Electron Microscopy) and particle size distribution analyses were carried out.展开更多
The demanding all-in-one electrocatalyst system for oxygen reduction reaction(ORR), oxygen evolution reaction(OER) and hydrogen evolution reaction(HER) in zinc-air batteries or water splitting requires elaborate mater...The demanding all-in-one electrocatalyst system for oxygen reduction reaction(ORR), oxygen evolution reaction(OER) and hydrogen evolution reaction(HER) in zinc-air batteries or water splitting requires elaborate material manufacturing, which is usually complicated and time-consuming.Efficient interface engineering between MXene and highly active electrocatalytic species(CoS_(2)) is, herein, achieved by an in situ hydrothermal growth and facile sulfurization process.The CoS_(2)@MXene electrocatalyst is composed by one-dimensional CoS_(2) nanowires and two-dimensional MXene nanosheets, which lead to a hierarchical structure(large specific surface area and abundant active sites), a spatial electron redistribution(high intrinsic activity), and high anchoring strength(superior performance stability). Therefore, the electrocatalyst achieves enhanced catalytic activity and longtime stability for ORR(a half-wave potential of 0.80 V), OER(an overpotential of 270 mV at 10 mA cm^(-2), i.e., η10= 270 mV)and HER(η10= 175 mV). Furthermore, the asymmetry water splitting system based on the CoS_(2)@MXene composites delivers a low overall voltage of 1.63 V at 10 mA cm^(-2). The solidstate zinc-air batteries using CoS_(2)@MXene as the air cathode display a small charge-discharge voltage gap(0.53 V at1 mA cm^(-2)) and superior stability(60 circles and 20-h continuous test). The energy interconversion between the chemical energy and electricity can be achieved by a self-powered system via integrating the water splitting system and quasisolid-state zinc-air batteries. Supported by in situ Raman analyses, the formation of cobalt oxyhydroxide species provides the active sites for water oxidation. This study paves apromising avenue for the design and application of multifunctional nanocatalysts.展开更多
Zinc-air batteries(ZnABs) with high theoretical capacity and environmental benignity are the most promising candidates for next-generation electronics. However, their large-scale applications are greatly hindered due ...Zinc-air batteries(ZnABs) with high theoretical capacity and environmental benignity are the most promising candidates for next-generation electronics. However, their large-scale applications are greatly hindered due to the lack of high-efficient and cost-effective electrocatalysts. Transition metal phosphides(TMPs) have been reported as promising electrocatalysts. Notably,(Ni_(1-x)Cr_(x))_(2) P(0≤x≤0.15) is an unstable electrocatalyst, which undergoes in-situ electrochemical oxidation during the initial oxygen evolution reaction(OER) and even in the activation cycles, and is eventually converted to Cr-NiOOH serving as the actual OER active sites with high efficiency. Density functional theory(DFT) simulations and experimental results elucidate that the OER performance could be significantly promoted by the synergistic effect of surface engineering and electronic modulations by Cr doping and in-situ phase transformation. The constructed rechargeable ZnABs could stably cycle for more than 208 h at 5 m A cm^(-2), while the voltage degradation is negligible. Furthermore, the developed catalytic materials could be assembled into flexible and all-solid-state Zn ABs to power wearable electronics with high performance.展开更多
Energy crisis and environmental problems urgently drive the proposal of new strategies to improve human wellbeing and assist sustainable development.To this end,scientists have explored many metal oxides-based photoca...Energy crisis and environmental problems urgently drive the proposal of new strategies to improve human wellbeing and assist sustainable development.To this end,scientists have explored many metal oxides-based photocatalysts with high stability,low cost,earth abundance,and potentially high catalytic activity relevant for key applications such as H2O splitting,CO2 reduction,N2 fixation,and advanced oxidation of pollutants.In these metal oxides,oxygen vacancies(OVs)are ubiquitous and intrinsic defects with pronounced impacts on the physicochemical properties of the catalysts,which may open new opportunities for obtaining efficient metal oxides.The thorough understanding of the structural and electronic nature of OVs is necessary to determine how they serve as catalytically active sites.In this review,we summarize the origin of OVs,the strategies to introduce OVs,as well as the fundamental structure-activity relationships to relate these crystal defects to catalyst properties including light absorption,charge separation,etc.We emphasize the mechanism of OVs formation and their effects on the intrinsic catalytic characteristics of the metal oxides.We also present some multicomponent catalytic platforms where OVs contribute to catalysis via synergy.Finally,opportunities and challenges on engineering defects in photocatalysts are summarized to highlight the future directions of this research field.展开更多
Hierarchically nanostructured, porous TiO_2(B) microspheres were synthesized by a microwave-assisted solvothermal method combined with subsequent heat treatment in air. The materials were carefully characterized by sc...Hierarchically nanostructured, porous TiO_2(B) microspheres were synthesized by a microwave-assisted solvothermal method combined with subsequent heat treatment in air. The materials were carefully characterized by scanning and transmission electron microscopy, X-ray diffraction, CO_2 adsorption, and a range of spectroscopies, including Raman, infrared, X-ray photoelectron and UV-Vis spectroscopy. The hierarchical TiO_2(B) particles are constructed by ultrathin nanosheets and possess large specific surface area, which provided many active sites for CO_2 adsorption as well as CO_2 conversion. The TiO_2(B)nanostructures exhibited marked photocatalytic activity for CO_2 reduction to methane and methanol. Anatase TiO_2 and P25 were used as the reference photocatalysts. Transient photocurrent measurement also proved the higher photoactivity of TiO_2(B) than that of anatase TiO_2. In-situ infrared spectrum was measured to identify the intermediates and deduce the conversion process of CO_2 under illumination over TiO_2(B) photocatalyst.展开更多
文摘Relationship between the activity for photocatalytic H_(2)O overall splitting(HOS)and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram,and specially the d^(10)electronic configuration in valley bottom exhibits inert activity,which seriously fetters the development of catalytic materials with great potentials.Herein,In d^(10)electronic configuration of In_(2)O_(3)was activated by phosphorus atoms replacing its lattice oxygen to regulate the collocation of the ascended In 5p-band(Inɛ5p)and descended O 2p-band(Oɛ2p)centers as efficient active sites for chemisorption to*OH and*H during forward HOS,respectively,along with a declined In 4d-band center(Inɛ4d)to inhibit its backward reaction.A stable STH efficiency of 2.23%under AM 1.5 G irradiation at 65°C has been obtained over the activated d^(10)electronic configuration with a lowered activation energy for H_(2)evolution,verified by femtosecond transient absorption spectroscopy,in situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations of dynamics.These findings devote to activating d^(10)electronic configuration for resolving the reaction energy barrier and dynamical bottleneck of forward HOS,which expands the exploration of high-efficiency catalytic materials.
文摘A comprehensive understanding of the role of the electrocatalyst in photoelectrochemical(PEC)water splitting is central to improving its performance.Herein,taking the Si-based photoanodes(n^(+)p-Si/SiO_(x)/Fe/FeOx/MOOH,M=Fe,Co,Ni)as a model system,we investigate the effect of the transition-metal electrocatalysts on the oxygen evolution reaction(OER).Among the photoanodes with the three different electrocatalysts,the best OER activity,with a low-onset potential of∼1.01 VRHE,a high photocurrent density of 24.10 mA cm^(-2)at 1.23 VRHE,and a remarkable saturation photocurrent density of 38.82 mA cm^(-2),was obtained with the NiOOH overlayer under AM 1.5G simulated sunlight(100 mW cm^(-2))in 1 M KOH electrolyte.The optimal interfacial engineering for electrocatalysts plays a key role for achieving high performance because it promotes interfacial charge transport,provides a larger number of surface active sites,and results in higher OER activity,compared to other electrocatalysts.This study provides insights into how electrocatalysts function in water-splitting devices to guide future studies of solar energy conversion.
基金financial assistance from Tehran University of Medical Sciences,Tehran,Iran
文摘The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes(GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic deposition and the surface morphologies and compositions of electrodes were determined by energy-dispersive X-ray(EDX) and scanning electron microscopy(SEM). Cyclic voltammetry and chronoamperometric methods were employed to characterize the oxidation process and its kinetics. Voltammetric studies exhibit one pair of well-defined redox peaks, which is ascribed to the redox process of the nickel and followed by the greatly enhanced current response of the anodic peak in the presence of contraflam and a decrease in the corresponding cathodic current peak. This indicates that the immobilized redox mediator on the electrode surface was oxidized contraflam via an electrocatalytic mechanism. The catalytic currents increased linearly with the concentration of contraflam in the range of 0.25– 1.5 mmol/L. The anodic peak currents were linearly proportional to the square root of scan rate. This behaviour is the characteristic of a diffusion-controlled process. The determination of contraflam in capsules is applied satisfactorily by modified electrode.
文摘A catalyst is a substance that alters the rate of a reaction. The process of catalysis is essential to the modem day manufacturing industry, mainly in FCC (Fluid Catalytic Cracking) process units. However, long-term exploitation of oil and gas processing catalysts leads to formation of carbon- and sulfur-containing structures of coke and dense products on the catalyst surface. They block reactive catalyst sites and reduce the catalytic activity. The main advantage of radiation processing by EB (electron beam) and gamma rays is chain cracking reaction in crude oil. Otherwise, under exposure to ionize radiation, considerable structure modification of equilibrium silica-alumina catalyst from FCC process may occur, in addition to the removal of impurities. The conditions applied in the irradiation range (20-150 kGy) of gamma rays and EB were not sufficient to alter the structure of the catalyst, whether for removal of the contaminant nickel, a major contaminant of the FCC catalyst, either to rupture of the crystalline structure either for the future reutilization of chemical elements. ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy and EDXRFS (Energy Dispersive X-Ray Fluorescence Spectrometry) analysis were used to characterize and evaluate effects of radiation processing on equilibrium catalysts purification. To evaluate and comprehend the reactive catalyst sites, SEM (Scanning Electron Microscopy) and particle size distribution analyses were carried out.
基金supported by the National Natural Science Foundation of China (51871119 and 51901100)the High-Level Entrepreneurial and Innovative Talents Program of Jiangsu Province,Jiangsu Provincial Funds for Natural Science Foundation (BK20170793 and BK20180015)+2 种基金the Six Talent Peak Project of Jiangsu Province (2018-XCL-033)China Postdoctoral Science Foundation (2018M640481 and 2019T120426)the Foundation of Graduation Innovation Center in NUAA (kfjj20190609)。
文摘The demanding all-in-one electrocatalyst system for oxygen reduction reaction(ORR), oxygen evolution reaction(OER) and hydrogen evolution reaction(HER) in zinc-air batteries or water splitting requires elaborate material manufacturing, which is usually complicated and time-consuming.Efficient interface engineering between MXene and highly active electrocatalytic species(CoS_(2)) is, herein, achieved by an in situ hydrothermal growth and facile sulfurization process.The CoS_(2)@MXene electrocatalyst is composed by one-dimensional CoS_(2) nanowires and two-dimensional MXene nanosheets, which lead to a hierarchical structure(large specific surface area and abundant active sites), a spatial electron redistribution(high intrinsic activity), and high anchoring strength(superior performance stability). Therefore, the electrocatalyst achieves enhanced catalytic activity and longtime stability for ORR(a half-wave potential of 0.80 V), OER(an overpotential of 270 mV at 10 mA cm^(-2), i.e., η10= 270 mV)and HER(η10= 175 mV). Furthermore, the asymmetry water splitting system based on the CoS_(2)@MXene composites delivers a low overall voltage of 1.63 V at 10 mA cm^(-2). The solidstate zinc-air batteries using CoS_(2)@MXene as the air cathode display a small charge-discharge voltage gap(0.53 V at1 mA cm^(-2)) and superior stability(60 circles and 20-h continuous test). The energy interconversion between the chemical energy and electricity can be achieved by a self-powered system via integrating the water splitting system and quasisolid-state zinc-air batteries. Supported by in situ Raman analyses, the formation of cobalt oxyhydroxide species provides the active sites for water oxidation. This study paves apromising avenue for the design and application of multifunctional nanocatalysts.
基金supported by the National Natural Science Foundation of China (21603019 and 201503025)the National Key Research and Development Program of China (2016YFE0125900)the program for the Hundred Talents Program of Chongqing University。
文摘Zinc-air batteries(ZnABs) with high theoretical capacity and environmental benignity are the most promising candidates for next-generation electronics. However, their large-scale applications are greatly hindered due to the lack of high-efficient and cost-effective electrocatalysts. Transition metal phosphides(TMPs) have been reported as promising electrocatalysts. Notably,(Ni_(1-x)Cr_(x))_(2) P(0≤x≤0.15) is an unstable electrocatalyst, which undergoes in-situ electrochemical oxidation during the initial oxygen evolution reaction(OER) and even in the activation cycles, and is eventually converted to Cr-NiOOH serving as the actual OER active sites with high efficiency. Density functional theory(DFT) simulations and experimental results elucidate that the OER performance could be significantly promoted by the synergistic effect of surface engineering and electronic modulations by Cr doping and in-situ phase transformation. The constructed rechargeable ZnABs could stably cycle for more than 208 h at 5 m A cm^(-2), while the voltage degradation is negligible. Furthermore, the developed catalytic materials could be assembled into flexible and all-solid-state Zn ABs to power wearable electronics with high performance.
基金financially supported by the National Natural Science Foundation of China(U1905215,51772053 and 51672046)。
文摘Energy crisis and environmental problems urgently drive the proposal of new strategies to improve human wellbeing and assist sustainable development.To this end,scientists have explored many metal oxides-based photocatalysts with high stability,low cost,earth abundance,and potentially high catalytic activity relevant for key applications such as H2O splitting,CO2 reduction,N2 fixation,and advanced oxidation of pollutants.In these metal oxides,oxygen vacancies(OVs)are ubiquitous and intrinsic defects with pronounced impacts on the physicochemical properties of the catalysts,which may open new opportunities for obtaining efficient metal oxides.The thorough understanding of the structural and electronic nature of OVs is necessary to determine how they serve as catalytically active sites.In this review,we summarize the origin of OVs,the strategies to introduce OVs,as well as the fundamental structure-activity relationships to relate these crystal defects to catalyst properties including light absorption,charge separation,etc.We emphasize the mechanism of OVs formation and their effects on the intrinsic catalytic characteristics of the metal oxides.We also present some multicomponent catalytic platforms where OVs contribute to catalysis via synergy.Finally,opportunities and challenges on engineering defects in photocatalysts are summarized to highlight the future directions of this research field.
基金supported by the National Basic Research Program of China(2013CB632402)the National Natural Science Foundation of China(51320105001,21433007,51372190,21573170)+3 种基金the Natural Science Foundation of Hubei Province(2015CFA001)the Fundamental Research Funds for the Central Universities(WUT:2015-III-034)Innovative Research Funds of SKLWUT(2017-ZD-4)the Discovery Early Career Researcher Award(DECRA)by Australian Research Council(DE160101488)
文摘Hierarchically nanostructured, porous TiO_2(B) microspheres were synthesized by a microwave-assisted solvothermal method combined with subsequent heat treatment in air. The materials were carefully characterized by scanning and transmission electron microscopy, X-ray diffraction, CO_2 adsorption, and a range of spectroscopies, including Raman, infrared, X-ray photoelectron and UV-Vis spectroscopy. The hierarchical TiO_2(B) particles are constructed by ultrathin nanosheets and possess large specific surface area, which provided many active sites for CO_2 adsorption as well as CO_2 conversion. The TiO_2(B)nanostructures exhibited marked photocatalytic activity for CO_2 reduction to methane and methanol. Anatase TiO_2 and P25 were used as the reference photocatalysts. Transient photocurrent measurement also proved the higher photoactivity of TiO_2(B) than that of anatase TiO_2. In-situ infrared spectrum was measured to identify the intermediates and deduce the conversion process of CO_2 under illumination over TiO_2(B) photocatalyst.