面向国家绿色低碳战略目标,变革化石资源合成氨技术路线变得尤为迫切,开发可再生能源制“绿氨”将成为合成氨领域未来的重要发展方向.将工业废水中的硝酸根(NO_(3)-)电催化还原为氨(NO_(3)RR),既可有效回收氨,又能消除硝酸根污染影响.然...面向国家绿色低碳战略目标,变革化石资源合成氨技术路线变得尤为迫切,开发可再生能源制“绿氨”将成为合成氨领域未来的重要发展方向.将工业废水中的硝酸根(NO_(3)-)电催化还原为氨(NO_(3)RR),既可有效回收氨,又能消除硝酸根污染影响.然而,NO_(3)RR涉及缓慢的八电子转移过程,含有多种反应中间体,其反应机理复杂不明.此外,水系电解液中存在的析氢竞争反应也为高效NO_(3)RR催化剂的开发设计带来了巨大的挑战.为突破高效催化剂的发展瓶颈,本文通过理论模拟,在低成本的催化剂上设计了高效的NO_(3)RR催化活性位点,并利用简单的制备策略合成了目标催化剂.同时,结合原位表征技术,阐明了NO_(3)RR的反应路径及催化机理.本文通过密度泛函理论(DFT)计算发现,Cu/TiO_(2)催化剂上的Cu-O-Ti-O_(v)结构具有较好的NO_(3)-还原活性,该结构不仅能够促进反应中间体NOx-的吸附和活化,还能有效抑制竞争析氢反应,从而降低NO_(3)RR的反应能垒.在该结构上,NO_(3)RR的反应路径为:NO_(3)^(*)→NO_(2)^(*)→HONO^(*)→NO^(*)→*NOH→*N→^(*)NH→*NH2→*NH_(3)→NH_(3).基于理论计算结果,分别采用浸渍法和尿素水解法制备了系列富含Cu-O-Ti-O_(v)结构的Cu/TiO_(2)催化剂.氮气等温吸附-脱附曲线、拉曼光谱(Raman)、电子顺磁共振波谱、X射线光电子能谱(XPS)和傅立叶红外光谱等结果发现,相比于采用浸渍法制备的系列Cu/TiO_(2)催化剂,采用尿素水解法制备的Cu/TiO_(2)(CT-U)催化剂具有更大的比表面积以及更多的Cu-O-Ti-O_(v)位点,说明尿素水解法可提高Cu颗粒在TiO_(2)载体表面的分散度,增强Cu颗粒与TiO_(2)载体之间的相互作用,提高Cu/TiO_(2)催化剂表面的Cu-O-Ti-O_(v)位点含量.将以上制备出的催化剂应用于催化NO_(3)RR中,结果表明,在-1.0 V vs.RHE还原电位下,CT-U催化剂上氨产率可达3046.5μg h^(-1) mgcat^(-1),高于大多数文献报道结果.循环稳定性测试结果表明,在Cu/TiO_(2)催化剂上构建Cu-O-Ti-O_(v)位点还能显著抑制电催化反应过程中Cu物种从Cu/TiO_(2)催化剂上溶出,从而显著增强催化剂的稳定性.此外,设计制备了不含氧空位的Cu/TiO_(2),TiO_(2)-x,Cu,Cu_(2)O以及CuO催化剂,并将其用于催化NO_(3)RR.结果发现,上述催化剂上的氨产率皆明显低于CT-U催化剂,说明Cu,Ti以及O_(v)构成的Cu-O-Ti-O_(v)结构具有较好的催化协同作用,从而显著提升了NO_(3)RR反应活性.最后,通过原位Raman及原位XPS表征检测反应中间体,验证了由DFT模拟出的NO_(3)RR反应路径.综上,通过在Cu/TiO_(2)催化剂上理论指导构建Cu-O-Ti-O_(v)活性位点,实现了NO_(3)RR性能的有效提升.Cu-O-Ti-O_(v)结构中的多位点协同作用不仅促进了NO_(x)-的吸附和活化,而且抑制了电催化过程中Cu物种从催化剂上的溶出,从而提高了催化剂的稳定性.本研究为设计高效稳定的NO_(3)RR催化剂提供了新思路.展开更多
The accumulation of excessive nitrate in the atmosphere not only jeopardizes human health but also disrupts the balance of the nitrogen cycle in the ecosystem.Among various nitrate removal technologies,electrocatalyti...The accumulation of excessive nitrate in the atmosphere not only jeopardizes human health but also disrupts the balance of the nitrogen cycle in the ecosystem.Among various nitrate removal technologies,electrocatalytic nitrate reduction reaction(eNO_(3)RR)has been widely studied for its advantages of being eco-friendly,easy to operate,and controllable under environmental conditions with renewable energy as the driving force.Transition metal-based catalysts(TMCs)have been widely used in electrocatalysis due to their abundant reserves,low costs,easy-to-regulate electronic structure and considerable electrochemical activity.In addition,TMCs have been extensively studied in terms of the kinetics of the nitrate reduction reaction,the moderate adsorption energy of nitrogen-containing species and the active hydrogen supply capacity.Based on this,this review firstly discusses the mechanism as well as analyzes the two main reduction products(N_(2)and NH_(3))of eNO_(3)RR,and reveals the basic guidelines for the design of efficient nitrate catalysts from the perspective of the reaction mechanism.Secondly,this review mainly focuses on the recent advances in the direction of eNO_(3RR)with four types of TMCs,Fe,Co,Ni and Cu,and unveils the interfacial modulation strategies of Fe,Co,Ni and Cu catalysts for the activity,reaction pathway and stability.Finally,reasonable suggestions and opportunities are proposed for the challenges and future development of eNO_(3)RR.This review provides far-reaching implications for exploring cost-effective TMCs to replace high-cost noble metal catalysts(NMCs)for eNO_(3)RR.展开更多
文摘面向国家绿色低碳战略目标,变革化石资源合成氨技术路线变得尤为迫切,开发可再生能源制“绿氨”将成为合成氨领域未来的重要发展方向.将工业废水中的硝酸根(NO_(3)-)电催化还原为氨(NO_(3)RR),既可有效回收氨,又能消除硝酸根污染影响.然而,NO_(3)RR涉及缓慢的八电子转移过程,含有多种反应中间体,其反应机理复杂不明.此外,水系电解液中存在的析氢竞争反应也为高效NO_(3)RR催化剂的开发设计带来了巨大的挑战.为突破高效催化剂的发展瓶颈,本文通过理论模拟,在低成本的催化剂上设计了高效的NO_(3)RR催化活性位点,并利用简单的制备策略合成了目标催化剂.同时,结合原位表征技术,阐明了NO_(3)RR的反应路径及催化机理.本文通过密度泛函理论(DFT)计算发现,Cu/TiO_(2)催化剂上的Cu-O-Ti-O_(v)结构具有较好的NO_(3)-还原活性,该结构不仅能够促进反应中间体NOx-的吸附和活化,还能有效抑制竞争析氢反应,从而降低NO_(3)RR的反应能垒.在该结构上,NO_(3)RR的反应路径为:NO_(3)^(*)→NO_(2)^(*)→HONO^(*)→NO^(*)→*NOH→*N→^(*)NH→*NH2→*NH_(3)→NH_(3).基于理论计算结果,分别采用浸渍法和尿素水解法制备了系列富含Cu-O-Ti-O_(v)结构的Cu/TiO_(2)催化剂.氮气等温吸附-脱附曲线、拉曼光谱(Raman)、电子顺磁共振波谱、X射线光电子能谱(XPS)和傅立叶红外光谱等结果发现,相比于采用浸渍法制备的系列Cu/TiO_(2)催化剂,采用尿素水解法制备的Cu/TiO_(2)(CT-U)催化剂具有更大的比表面积以及更多的Cu-O-Ti-O_(v)位点,说明尿素水解法可提高Cu颗粒在TiO_(2)载体表面的分散度,增强Cu颗粒与TiO_(2)载体之间的相互作用,提高Cu/TiO_(2)催化剂表面的Cu-O-Ti-O_(v)位点含量.将以上制备出的催化剂应用于催化NO_(3)RR中,结果表明,在-1.0 V vs.RHE还原电位下,CT-U催化剂上氨产率可达3046.5μg h^(-1) mgcat^(-1),高于大多数文献报道结果.循环稳定性测试结果表明,在Cu/TiO_(2)催化剂上构建Cu-O-Ti-O_(v)位点还能显著抑制电催化反应过程中Cu物种从Cu/TiO_(2)催化剂上溶出,从而显著增强催化剂的稳定性.此外,设计制备了不含氧空位的Cu/TiO_(2),TiO_(2)-x,Cu,Cu_(2)O以及CuO催化剂,并将其用于催化NO_(3)RR.结果发现,上述催化剂上的氨产率皆明显低于CT-U催化剂,说明Cu,Ti以及O_(v)构成的Cu-O-Ti-O_(v)结构具有较好的催化协同作用,从而显著提升了NO_(3)RR反应活性.最后,通过原位Raman及原位XPS表征检测反应中间体,验证了由DFT模拟出的NO_(3)RR反应路径.综上,通过在Cu/TiO_(2)催化剂上理论指导构建Cu-O-Ti-O_(v)活性位点,实现了NO_(3)RR性能的有效提升.Cu-O-Ti-O_(v)结构中的多位点协同作用不仅促进了NO_(x)-的吸附和活化,而且抑制了电催化过程中Cu物种从催化剂上的溶出,从而提高了催化剂的稳定性.本研究为设计高效稳定的NO_(3)RR催化剂提供了新思路.
基金National Natural Science Foundation of China(Nos.52172291 and 52122312)“Dawn”Program of Shanghai Education Commission,China(No.22SG31)。
文摘The accumulation of excessive nitrate in the atmosphere not only jeopardizes human health but also disrupts the balance of the nitrogen cycle in the ecosystem.Among various nitrate removal technologies,electrocatalytic nitrate reduction reaction(eNO_(3)RR)has been widely studied for its advantages of being eco-friendly,easy to operate,and controllable under environmental conditions with renewable energy as the driving force.Transition metal-based catalysts(TMCs)have been widely used in electrocatalysis due to their abundant reserves,low costs,easy-to-regulate electronic structure and considerable electrochemical activity.In addition,TMCs have been extensively studied in terms of the kinetics of the nitrate reduction reaction,the moderate adsorption energy of nitrogen-containing species and the active hydrogen supply capacity.Based on this,this review firstly discusses the mechanism as well as analyzes the two main reduction products(N_(2)and NH_(3))of eNO_(3)RR,and reveals the basic guidelines for the design of efficient nitrate catalysts from the perspective of the reaction mechanism.Secondly,this review mainly focuses on the recent advances in the direction of eNO_(3RR)with four types of TMCs,Fe,Co,Ni and Cu,and unveils the interfacial modulation strategies of Fe,Co,Ni and Cu catalysts for the activity,reaction pathway and stability.Finally,reasonable suggestions and opportunities are proposed for the challenges and future development of eNO_(3)RR.This review provides far-reaching implications for exploring cost-effective TMCs to replace high-cost noble metal catalysts(NMCs)for eNO_(3)RR.