Two-dimensional(2 D) transition metal dichalcogenides(TMDCs) have drawn intensive attention due to their ultrathin feature with excellent electrostatic gating capability, and unique thickness-dependent electronic and ...Two-dimensional(2 D) transition metal dichalcogenides(TMDCs) have drawn intensive attention due to their ultrathin feature with excellent electrostatic gating capability, and unique thickness-dependent electronic and optical properties. Controlling the thickness and doping of 2 D TMDCs are crucial toward their future applications. Here, we report an effective HAu Cl4 treatment method and achieve simultaneous thinning and doping of various TMDCs in one step. We find that the HAu Cl4 treatment not only thins thick Mo S2 flakes into few layers or even monolayers, but also simultaneously tunes Mo S2 into p-type. The effects of various parameters in the process have been studied systematically,and an Au intercalation assisted thinning and doping mechanism is proposed. Importantly, this method also works for other typical TMDCs, including WS2, Mo Se2 and WSe2,showing good universality. Electrical transport measurements of field-effect transistors(FETs) based on Mo S2 flakes show a big increase of On/Off current ratios(from 102 to 107) after the HAu Cl4 treatment. Meanwhile, the subthreshold voltages of the Mo S2 FETs shift from-60 to +27 V after the HAu Cl4 treatment, with a p-type doping behavior. This study provides an effective and simple method to control the thickness and doping properties of 2 D TMDCs, paving a way for their applications in high performance electronics and optoelectronics.展开更多
基金support from the National Natural Science Foundation of China (51722206 and 11674150)the Youth 1000-Talent Program of China+3 种基金the Economic, Trade and Information Commission of Shenzhen Municipality for the “2017 Graphene Manufacturing Innovation Center Project” (201901171523)Shenzhen Basic Research Project (JCYJ20170307140956657 and JCYJ20160613160524999)Guangdong Innovative and Entrepreneurial Research Team Program (2017ZT07C341 and 2016ZT06D348)the Development and Reform Commission of Shenzhen Municipality for the development of the “Low-Dimensional Materials and Devices” discipline
文摘Two-dimensional(2 D) transition metal dichalcogenides(TMDCs) have drawn intensive attention due to their ultrathin feature with excellent electrostatic gating capability, and unique thickness-dependent electronic and optical properties. Controlling the thickness and doping of 2 D TMDCs are crucial toward their future applications. Here, we report an effective HAu Cl4 treatment method and achieve simultaneous thinning and doping of various TMDCs in one step. We find that the HAu Cl4 treatment not only thins thick Mo S2 flakes into few layers or even monolayers, but also simultaneously tunes Mo S2 into p-type. The effects of various parameters in the process have been studied systematically,and an Au intercalation assisted thinning and doping mechanism is proposed. Importantly, this method also works for other typical TMDCs, including WS2, Mo Se2 and WSe2,showing good universality. Electrical transport measurements of field-effect transistors(FETs) based on Mo S2 flakes show a big increase of On/Off current ratios(from 102 to 107) after the HAu Cl4 treatment. Meanwhile, the subthreshold voltages of the Mo S2 FETs shift from-60 to +27 V after the HAu Cl4 treatment, with a p-type doping behavior. This study provides an effective and simple method to control the thickness and doping properties of 2 D TMDCs, paving a way for their applications in high performance electronics and optoelectronics.