A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in th...A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in this study.Specifically,Co-MOF as an electron donor is capable of transferring the photogenerated electrons in the lowest unoccupied molecular orbital(LUMO)to the conduction band of g-C3N4 to facilitate charge separation.As expected,the prepared Co-MOF/g-C3N4 nanocomposites display excellent visible-light-driven photocatalytic CO2 reduction activities.The CO production rate of 6.75μmol g–1 h–1 and CH4 evolution rate of 5.47μmol g–1 h–1 are obtained,which are approximately 2 times those obtained with the original g-C3N4 under the same conditions.Based on a series of analyses,it is shown that the introduction of Co-MOF not only broadens the range of visible-light absorption but also enhances the charge separation,which improves the photocatalytic activity of g-C3N4 to a higher level.In particular,the hydroxyl radical(·OH)experiment was operated under 590 nm(single-wavelength)irradiation,which further proved that the photogenerated electrons in the LUMO of Co-MOF can successfully migrate to g-C3N4.This work may provide an important strategy for the design of highly efficient g-C3N4-based photocatalysts for CO2 reduction.展开更多
Photopolymerized sol-gel(PSG) columns were prepared using methacryloxypropyltrimethoxysilane as the monomer,toluene as the porogen and hydrochloric acid as the catalyst.Four different photoinitiators such as benzoin m...Photopolymerized sol-gel(PSG) columns were prepared using methacryloxypropyltrimethoxysilane as the monomer,toluene as the porogen and hydrochloric acid as the catalyst.Four different photoinitiators such as benzoin methyl ether,Irgacure 819,Irgacure 1700 and Irgacure 1800 were comparatively used in the reaction solution in the presence and absence of sodium dodecyl sulfate.The above eight solutions were respectively irradiated at 365 nm for 5?10 min in each capillary(75 μm inside diameter) to prepare the porous monolithic sol-gel column by a one-step,in situ,process.The chromatographic behavior of the eight PSG columns were comparatively studied,all of which exhibit reversed-phase character.Using these columns,several neutral compounds,namely thiourea,benzene,toluene,ethyl benzene,biphenyl and naphthalene can be separated from mixtures with a largest column efficiency of 74 470 plate/column for thiourea.Addition of sodium dodecyl sulfate in the polymerization process has a significant influence on the morphology and migration time.展开更多
The topic of offshore wind energy is attracting more and more attention as the energy crisis heightens.The blades are the key components of offshore wind turbines,and their dynamic characteristics directly determine t...The topic of offshore wind energy is attracting more and more attention as the energy crisis heightens.The blades are the key components of offshore wind turbines,and their dynamic characteristics directly determine the effectiveness of offshore wind turbines.With different rotating speeds and blade length,the rotating blades generate various centrifugal stiffening effects.To directly analyze the centrifugal stiffening effect of blades,the Rayleigh energy method (REM) was used to derive the natural frequency equation of the blade,including the centrifugal stiffening effect and the axial force calculation formula.The axial force planes and the first to third order natural frequency planes which vary with the rotating speed and length were calculated in three-dimensional coordinates.The centrifugal stiffening coefficient was introduced to quantitatively study the relationship between the centrifugal stiffening degree and the rotating speed,and then the fundamental frequency correction formula was built based on the rotating speed and the blade length.The analysis results show that the calculation results of the fundamental frequency correction formula agree with the theoretical calculation results.The error of calculation results between them is less than 0.5%.展开更多
lmprovement of the charge separation of titanosilicate molecular sieves is critical to their use asphotocatalysts for oxidative organic transformations.In this work,MFI TS-1 molecular sievenanosheets(TS-1 NS)were synt...lmprovement of the charge separation of titanosilicate molecular sieves is critical to their use asphotocatalysts for oxidative organic transformations.In this work,MFI TS-1 molecular sievenanosheets(TS-1 NS)were synthesized by a low-temperature hydrothermal method using a tai-lored diquaternary ammonium surfactant as the structure-directing agent.Introducing Ni^2+cationsat the ion-exchange sites of the TS-1 NS framework significantly enhanced its photoactivity in aero-bic alcohol oxidation.The optimized Ni cation-functionalized TS-1 NS(Ni/TS-1 NS)provide impres-sive photoactivity,with a benzyl alcohol(BA)conversion of 78.9%and benzyl aldehyde(BAD)se-lectivity of 98.8%using O as the only oxidant under full light irradiation;this BAD yield is approx-imately six times greater than that obtained for bulk TS-1,and is maintained for five runs.The ex-cellent photoactivity of Ni/TS-1 NS is attributed to the significantly enlarged surface area of thetwo-dimensional morphology TS-1 NS,extra mesopores,and greatly improved charge separation.Compared with bulk TS-1,Ni/TS-1 NS has a much shorter charge transfer distance.Theas-introduced Ni species could capture the photoelectrons to further improve the charge separa-tion.This work opens the way to a class of highly selective,robust,and low-cost titanosilicate mo-lecular sieve-based photocatalysts with industrial potential for selective oxidative transformationsand pollutant degradation.展开更多
As feature sizes shrink,low energy consumption,high reliability and high performance become key objectives of network-on-chip(NoC) design.In this paper,an integrated approach is presented to map IP cores onto NoC arch...As feature sizes shrink,low energy consumption,high reliability and high performance become key objectives of network-on-chip(NoC) design.In this paper,an integrated approach is presented to map IP cores onto NoC architecture and assign voltage levels for each link,such that the communication energy is minimized under constraints of bandwidth and reliability.The design space is explored using tabu search.In order to select optimal voltage level for the links,an energy-efficiency driven heuristic algorithm is proposed to perform energy/reliability trade-off by exploiting communication slack.Experimental results show that the ordinary energy optimization techniques ignoring the influence of voltage on fault rates could lead to drastically decreased communication reliability of NoCs,and the proposed approach can produce reliable and energy-efficient implementations.展开更多
In order to develop an efficient method about protein extraction which is suitable for apple proteomic analysis, four protocols of total protein extraction from apple leaves, which are trichloroacetic acid/acetone pre...In order to develop an efficient method about protein extraction which is suitable for apple proteomic analysis, four protocols of total protein extraction from apple leaves, which are trichloroacetic acid/acetone precipitation method (TCA), phenol extraction methanol/ammonium acetate precipitation method, Tris-HCl extraction method and modified Tris-HCl extraction method were compared. The results showed that the modified Tris-HCl extraction method was the most suitable method in protein extraction for two-dimensional electrophoresis (2-DE) from apple leaves based on the highest resolution and more informative spots of 2-DE gels with no apparent vertical or horizontal streaking.展开更多
Sodium carbonate and carboxymethyl cellulose powders are compressed into two-component tablets with three mass ratios,97%:3%,95%:5% and 93%:7%.The dissolution tests for two-component tablets and reference pure sodium ...Sodium carbonate and carboxymethyl cellulose powders are compressed into two-component tablets with three mass ratios,97%:3%,95%:5% and 93%:7%.The dissolution tests for two-component tablets and reference pure sodium carbonate tablets are carried out at various temperatures.The dissolution process of each tablet is measured by electrical conductivity tracking method and the concentration of dissolved sodium carbonate is quanti fied with calibrated conductivity-concentration converting equation of sodium carbonate.The quanti fied dissolution data is fitted with both surface reaction model and diffusion layer model and the results clearly show that surface reaction model is suggested as the appropriate dissolution model for all measured tablets.Therefore,it is determined that carboxymethyl cellulose is a stable element to remain the dissolution mechanism of tablet unchanged.The dissolution rate constant quanti fied with surface reaction model presents that carboxymethyl cellulose-sodium carbonate two-component tablets obtain signi ficant higher dissolution rate constant than pure sodium carbonate tablet and higher proportion of carboxymethyl cellulose leads to apparent higher dissolution rate constant.The results prove for the usage of carboxymethyl cellulose in most practical applications at a relative low-level,the effect of carboxymethyl cellulose is effective and positive for two-component tablet to enhance the dissolution process and improve dissolution rate constant and this effect is speculated coming from its dynamic physical transforming process in water including dilation and conglutination.展开更多
The increasing exploration of renewable and clean power sources have driven the development of highly active materials for photoelectrochemical (PEC) water splitting. However, it is still a great challenge to enhanc...The increasing exploration of renewable and clean power sources have driven the development of highly active materials for photoelectrochemical (PEC) water splitting. However, it is still a great challenge to enhance the charge utilization. Herein, we report a facile method to fabricate composite photoanode with porous BiVO4 film as the photon absorber and layered double hydroxide (LDH) nanosheet arrays as the oxygen-evolution cocatalysts (OECs). The as-prepared BiVO4/NiFe-LDH photoanode shows an excellent performance for PEC water splitting benefitting from the synergistic effect of the superior charge separation efficiency facilitated by porous BiVO4 film and the excellent water oxidation activity resulting from LDH nanosheet arrays. A photocurrent density is 4.02 mA cm^-2 at 1.23 V vs. the reversible hydrogen electrode (RHE). Furthermore, the O2 evolution rate at the surface of BiVO4/NiFe-LDH photoanode is as high as 29.6 μmol h^-1 cm^-2 and the high activity for water oxidation is maintained for over 30 h. Impressively, the performance of the as-fabricated composite photoanode for PEC water splitting can be further enhanced through incorporating a certain amount of Co^2+ cation into NiFe-LDH as OEC. The photocurrent density is achieved up to 4.45 mA cm^-2 at 1.23 V vs. RHE. This value is the highest yet reported for un-doped BiVO4-based photoanodes so far.展开更多
The increasing demand for portable electronic devices and hybrid electric vehicles stimulates the develop- ment of supercapacitors as an advanced energy storage system. Here, we demonstrate a binder-free nickel hydrox...The increasing demand for portable electronic devices and hybrid electric vehicles stimulates the develop- ment of supercapacitors as an advanced energy storage system. Here, we demonstrate a binder-free nickel hydroxide@nano- porous gold/Ni foam (Ni(OH)2@NPG/Ni foam) electrode for high-performance supercapacitors, which is prepared by a facile three-step fabrication route including electrodeposition of Au-Sn alloy on Ni foam, chemical dealloying of Sn and electrodepostion of Ni(OH)2 on NPG/Ni foam. Such Ni(OH)2@NPG/Ni foam electrode is composed of a thin layer of conformable Ni(OH)2 nanoflakes supported on three-di- mensional (3D) hierarchically porous NPG/Ni foam substrate. The resulting Ni(OH)2@NPG/Ni foam electrode can offer highways for both electron transfer and ion transport and lead to an excellent electrochemical performance with an ultrahigh specific capacitance of 3,380 F g-1 at a current density of 2 A g-1. Even when the current density was increased to 50 A g-1, it still retained a high capacitance of 1,927 F g-1. The promising performance of the Ni(OH)2@NPG/Ni foam elec- trode is mainly ascribed to the 3D hierarchical porosity and the highly conductive network on the NPG/Ni foam composite current collector, as well as the conformal electrodeposition of Ni(OH)2 active material on the NPG/Ni foam, which induces the formation of interconnected porosity both on the top surface and on the inner surface of the electrode. This in- spiring electrochemical performance would make the as-de- signed electrode material become one of the most promising candidates for future electrochemical energy storage systems.展开更多
基金supported by the National Natural Science Foundation of China(21871079,21501052)the Outstanding Youth Project of Natural Science Foundation of Heilongjiang Province(YQ2019B006)~~
文摘A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in this study.Specifically,Co-MOF as an electron donor is capable of transferring the photogenerated electrons in the lowest unoccupied molecular orbital(LUMO)to the conduction band of g-C3N4 to facilitate charge separation.As expected,the prepared Co-MOF/g-C3N4 nanocomposites display excellent visible-light-driven photocatalytic CO2 reduction activities.The CO production rate of 6.75μmol g–1 h–1 and CH4 evolution rate of 5.47μmol g–1 h–1 are obtained,which are approximately 2 times those obtained with the original g-C3N4 under the same conditions.Based on a series of analyses,it is shown that the introduction of Co-MOF not only broadens the range of visible-light absorption but also enhances the charge separation,which improves the photocatalytic activity of g-C3N4 to a higher level.In particular,the hydroxyl radical(·OH)experiment was operated under 590 nm(single-wavelength)irradiation,which further proved that the photogenerated electrons in the LUMO of Co-MOF can successfully migrate to g-C3N4.This work may provide an important strategy for the design of highly efficient g-C3N4-based photocatalysts for CO2 reduction.
基金Project(20611140646) supported by the NSFC-KOSEF Scientific Cooperation Program project(2006HANCET-01) supported by Program for New Century Talents of University of Henan Provinceproject(2005-461-140) supported by Program for Backbone Teacher in Henan Province
文摘Photopolymerized sol-gel(PSG) columns were prepared using methacryloxypropyltrimethoxysilane as the monomer,toluene as the porogen and hydrochloric acid as the catalyst.Four different photoinitiators such as benzoin methyl ether,Irgacure 819,Irgacure 1700 and Irgacure 1800 were comparatively used in the reaction solution in the presence and absence of sodium dodecyl sulfate.The above eight solutions were respectively irradiated at 365 nm for 5?10 min in each capillary(75 μm inside diameter) to prepare the porous monolithic sol-gel column by a one-step,in situ,process.The chromatographic behavior of the eight PSG columns were comparatively studied,all of which exhibit reversed-phase character.Using these columns,several neutral compounds,namely thiourea,benzene,toluene,ethyl benzene,biphenyl and naphthalene can be separated from mixtures with a largest column efficiency of 74 470 plate/column for thiourea.Addition of sodium dodecyl sulfate in the polymerization process has a significant influence on the morphology and migration time.
基金Supported by the National Natural Science Foundation of China under Grant No.50708015the foundation of State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology
文摘The topic of offshore wind energy is attracting more and more attention as the energy crisis heightens.The blades are the key components of offshore wind turbines,and their dynamic characteristics directly determine the effectiveness of offshore wind turbines.With different rotating speeds and blade length,the rotating blades generate various centrifugal stiffening effects.To directly analyze the centrifugal stiffening effect of blades,the Rayleigh energy method (REM) was used to derive the natural frequency equation of the blade,including the centrifugal stiffening effect and the axial force calculation formula.The axial force planes and the first to third order natural frequency planes which vary with the rotating speed and length were calculated in three-dimensional coordinates.The centrifugal stiffening coefficient was introduced to quantitatively study the relationship between the centrifugal stiffening degree and the rotating speed,and then the fundamental frequency correction formula was built based on the rotating speed and the blade length.The analysis results show that the calculation results of the fundamental frequency correction formula agree with the theoretical calculation results.The error of calculation results between them is less than 0.5%.
文摘lmprovement of the charge separation of titanosilicate molecular sieves is critical to their use asphotocatalysts for oxidative organic transformations.In this work,MFI TS-1 molecular sievenanosheets(TS-1 NS)were synthesized by a low-temperature hydrothermal method using a tai-lored diquaternary ammonium surfactant as the structure-directing agent.Introducing Ni^2+cationsat the ion-exchange sites of the TS-1 NS framework significantly enhanced its photoactivity in aero-bic alcohol oxidation.The optimized Ni cation-functionalized TS-1 NS(Ni/TS-1 NS)provide impres-sive photoactivity,with a benzyl alcohol(BA)conversion of 78.9%and benzyl aldehyde(BAD)se-lectivity of 98.8%using O as the only oxidant under full light irradiation;this BAD yield is approx-imately six times greater than that obtained for bulk TS-1,and is maintained for five runs.The ex-cellent photoactivity of Ni/TS-1 NS is attributed to the significantly enlarged surface area of thetwo-dimensional morphology TS-1 NS,extra mesopores,and greatly improved charge separation.Compared with bulk TS-1,Ni/TS-1 NS has a much shorter charge transfer distance.Theas-introduced Ni species could capture the photoelectrons to further improve the charge separa-tion.This work opens the way to a class of highly selective,robust,and low-cost titanosilicate mo-lecular sieve-based photocatalysts with industrial potential for selective oxidative transformationsand pollutant degradation.
基金Supported by the Natural Science Foundation of China(No.61003032,61100118)Artificial Intelligence Key Laboratory of Sichuan Province of China(No.2010RY010,2011RYJ05)
文摘As feature sizes shrink,low energy consumption,high reliability and high performance become key objectives of network-on-chip(NoC) design.In this paper,an integrated approach is presented to map IP cores onto NoC architecture and assign voltage levels for each link,such that the communication energy is minimized under constraints of bandwidth and reliability.The design space is explored using tabu search.In order to select optimal voltage level for the links,an energy-efficiency driven heuristic algorithm is proposed to perform energy/reliability trade-off by exploiting communication slack.Experimental results show that the ordinary energy optimization techniques ignoring the influence of voltage on fault rates could lead to drastically decreased communication reliability of NoCs,and the proposed approach can produce reliable and energy-efficient implementations.
文摘In order to develop an efficient method about protein extraction which is suitable for apple proteomic analysis, four protocols of total protein extraction from apple leaves, which are trichloroacetic acid/acetone precipitation method (TCA), phenol extraction methanol/ammonium acetate precipitation method, Tris-HCl extraction method and modified Tris-HCl extraction method were compared. The results showed that the modified Tris-HCl extraction method was the most suitable method in protein extraction for two-dimensional electrophoresis (2-DE) from apple leaves based on the highest resolution and more informative spots of 2-DE gels with no apparent vertical or horizontal streaking.
基金the Institute of Particle and Science Engineering,University of Leeds and Procter & Gamble Newcastle Innovation Centre(UK) for partially funding the project
文摘Sodium carbonate and carboxymethyl cellulose powders are compressed into two-component tablets with three mass ratios,97%:3%,95%:5% and 93%:7%.The dissolution tests for two-component tablets and reference pure sodium carbonate tablets are carried out at various temperatures.The dissolution process of each tablet is measured by electrical conductivity tracking method and the concentration of dissolved sodium carbonate is quanti fied with calibrated conductivity-concentration converting equation of sodium carbonate.The quanti fied dissolution data is fitted with both surface reaction model and diffusion layer model and the results clearly show that surface reaction model is suggested as the appropriate dissolution model for all measured tablets.Therefore,it is determined that carboxymethyl cellulose is a stable element to remain the dissolution mechanism of tablet unchanged.The dissolution rate constant quanti fied with surface reaction model presents that carboxymethyl cellulose-sodium carbonate two-component tablets obtain signi ficant higher dissolution rate constant than pure sodium carbonate tablet and higher proportion of carboxymethyl cellulose leads to apparent higher dissolution rate constant.The results prove for the usage of carboxymethyl cellulose in most practical applications at a relative low-level,the effect of carboxymethyl cellulose is effective and positive for two-component tablet to enhance the dissolution process and improve dissolution rate constant and this effect is speculated coming from its dynamic physical transforming process in water including dilation and conglutination.
基金supported by the National Natural Science Foundation of China(21422104)the Key Project of Natural Science Foundation of Tianjin City(16JCZDJC30600)
文摘The increasing exploration of renewable and clean power sources have driven the development of highly active materials for photoelectrochemical (PEC) water splitting. However, it is still a great challenge to enhance the charge utilization. Herein, we report a facile method to fabricate composite photoanode with porous BiVO4 film as the photon absorber and layered double hydroxide (LDH) nanosheet arrays as the oxygen-evolution cocatalysts (OECs). The as-prepared BiVO4/NiFe-LDH photoanode shows an excellent performance for PEC water splitting benefitting from the synergistic effect of the superior charge separation efficiency facilitated by porous BiVO4 film and the excellent water oxidation activity resulting from LDH nanosheet arrays. A photocurrent density is 4.02 mA cm^-2 at 1.23 V vs. the reversible hydrogen electrode (RHE). Furthermore, the O2 evolution rate at the surface of BiVO4/NiFe-LDH photoanode is as high as 29.6 μmol h^-1 cm^-2 and the high activity for water oxidation is maintained for over 30 h. Impressively, the performance of the as-fabricated composite photoanode for PEC water splitting can be further enhanced through incorporating a certain amount of Co^2+ cation into NiFe-LDH as OEC. The photocurrent density is achieved up to 4.45 mA cm^-2 at 1.23 V vs. RHE. This value is the highest yet reported for un-doped BiVO4-based photoanodes so far.
基金financially supported by the National Natural Science Foundation of China (21673051,51604086)the Guangdong Science and Technology Department (2016A010104015)+4 种基金the Pearl River Scholar Funded Scheme of Guangdong Province Universities and Colleges (2015)the Science and Technology Program of Guangzhou (201604030037)the 'One-hundred Talents plan' (220418056)the 'One-hundred Young Talents plan' (220413126)the Youth Foundation (252151038) of Guangdong University of Technology
文摘The increasing demand for portable electronic devices and hybrid electric vehicles stimulates the develop- ment of supercapacitors as an advanced energy storage system. Here, we demonstrate a binder-free nickel hydroxide@nano- porous gold/Ni foam (Ni(OH)2@NPG/Ni foam) electrode for high-performance supercapacitors, which is prepared by a facile three-step fabrication route including electrodeposition of Au-Sn alloy on Ni foam, chemical dealloying of Sn and electrodepostion of Ni(OH)2 on NPG/Ni foam. Such Ni(OH)2@NPG/Ni foam electrode is composed of a thin layer of conformable Ni(OH)2 nanoflakes supported on three-di- mensional (3D) hierarchically porous NPG/Ni foam substrate. The resulting Ni(OH)2@NPG/Ni foam electrode can offer highways for both electron transfer and ion transport and lead to an excellent electrochemical performance with an ultrahigh specific capacitance of 3,380 F g-1 at a current density of 2 A g-1. Even when the current density was increased to 50 A g-1, it still retained a high capacitance of 1,927 F g-1. The promising performance of the Ni(OH)2@NPG/Ni foam elec- trode is mainly ascribed to the 3D hierarchical porosity and the highly conductive network on the NPG/Ni foam composite current collector, as well as the conformal electrodeposition of Ni(OH)2 active material on the NPG/Ni foam, which induces the formation of interconnected porosity both on the top surface and on the inner surface of the electrode. This in- spiring electrochemical performance would make the as-de- signed electrode material become one of the most promising candidates for future electrochemical energy storage systems.