In this paper, post-fault-tolerant control strategies for quad-inverter multiphase-multilevel induction motor drives are investigated. More specifically, four standard two-level three-phase VSIs (voltage source inver...In this paper, post-fault-tolerant control strategies for quad-inverter multiphase-multilevel induction motor drives are investigated. More specifically, four standard two-level three-phase VSIs (voltage source inverters) supplying the open-end windings of a dual three-phase induction motor is considered, quadrupling the power capability of a single VSI with given voltage and current ratings. In healthy conditions, the control algorithm is able to generate multi-level voltage waveforms, equivalent to the ones of a three-level inverter and to share the total motor power among the four dc sources in each switching period. This sharing capability is investigated under post-fault operating conditions, when one VSI must be completely insulated due to a severe failure on it. In this case, the conversion power unit can operate with a reduced power rating by a proper modulation of the remaining three VSIs. The whole ac motor drive has been numerically implemented, and the effectiveness of the proposed control strategies under healthy and post-fault operating conditions have been proved.展开更多
The effectiveness of a combination of fault current limiter and thyristor controlled braking resistor on power system stability enhancement and damping turbine shaft torsional oscillations has been studied. If both de...The effectiveness of a combination of fault current limiter and thyristor controlled braking resistor on power system stability enhancement and damping turbine shaft torsional oscillations has been studied. If both devices operate at the same bus, the stabilization control scheme can be carried out continuously and with flexibility. As a result, the fault currents are limited, and the generator disturbances and the turbine shaft torsional oscillations are converged quickly. In this paper, the effectiveness of the combination of both devices has been demonstrated by considering 3LG (three-lines-to-ground) fault in a two-machine infinite bus system. Also, temperature rise effect of both devices with various resistance values and weights has been demonstrated. Simulation results indicate a significant power system stability enhancement and damping turbine shaft torsional oscillations as well as with allowable temperature rise.展开更多
The paper presents a mathematical model of special construction induction traction motor. On the base of predictive filtering, analytical studies, fuzzy logic control, relying on the virtual data generated by FEM (Fi...The paper presents a mathematical model of special construction induction traction motor. On the base of predictive filtering, analytical studies, fuzzy logic control, relying on the virtual data generated by FEM (Finite Element Method) and BEM (Boundary Element Method) is detected faults of induction motor. Digital predictive filter is used to separate a fundamental harmonic from spectrum current and voltage harmonics. Fuzzy logic control is used to identify a motor state. Magnetic fields distribution in the traction motor, of the wheel vehicle is presented in the paper. Modem diagnostics method has been used for faulty motor simulation and shows results of motor fault effects. Some computer programs were applied in calculation of magnetic fields distribution. On the base of magnetic field distributions were analyzed different failures situations. Some laboratory experiments realized for induction traction motor were verified by results of computer calculations.展开更多
文摘In this paper, post-fault-tolerant control strategies for quad-inverter multiphase-multilevel induction motor drives are investigated. More specifically, four standard two-level three-phase VSIs (voltage source inverters) supplying the open-end windings of a dual three-phase induction motor is considered, quadrupling the power capability of a single VSI with given voltage and current ratings. In healthy conditions, the control algorithm is able to generate multi-level voltage waveforms, equivalent to the ones of a three-level inverter and to share the total motor power among the four dc sources in each switching period. This sharing capability is investigated under post-fault operating conditions, when one VSI must be completely insulated due to a severe failure on it. In this case, the conversion power unit can operate with a reduced power rating by a proper modulation of the remaining three VSIs. The whole ac motor drive has been numerically implemented, and the effectiveness of the proposed control strategies under healthy and post-fault operating conditions have been proved.
文摘The effectiveness of a combination of fault current limiter and thyristor controlled braking resistor on power system stability enhancement and damping turbine shaft torsional oscillations has been studied. If both devices operate at the same bus, the stabilization control scheme can be carried out continuously and with flexibility. As a result, the fault currents are limited, and the generator disturbances and the turbine shaft torsional oscillations are converged quickly. In this paper, the effectiveness of the combination of both devices has been demonstrated by considering 3LG (three-lines-to-ground) fault in a two-machine infinite bus system. Also, temperature rise effect of both devices with various resistance values and weights has been demonstrated. Simulation results indicate a significant power system stability enhancement and damping turbine shaft torsional oscillations as well as with allowable temperature rise.
文摘The paper presents a mathematical model of special construction induction traction motor. On the base of predictive filtering, analytical studies, fuzzy logic control, relying on the virtual data generated by FEM (Finite Element Method) and BEM (Boundary Element Method) is detected faults of induction motor. Digital predictive filter is used to separate a fundamental harmonic from spectrum current and voltage harmonics. Fuzzy logic control is used to identify a motor state. Magnetic fields distribution in the traction motor, of the wheel vehicle is presented in the paper. Modem diagnostics method has been used for faulty motor simulation and shows results of motor fault effects. Some computer programs were applied in calculation of magnetic fields distribution. On the base of magnetic field distributions were analyzed different failures situations. Some laboratory experiments realized for induction traction motor were verified by results of computer calculations.