This paper presents a practical pricing model for backup reserve and wheeling, which attains a balanced strategy that ensures perceived benefits to both the buyer and the seller. The model and the associated computeri...This paper presents a practical pricing model for backup reserve and wheeling, which attains a balanced strategy that ensures perceived benefits to both the buyer and the seller. The model and the associated computerized algorithm deal collectively with diverse issues, including: (1) fulfilling local firm real (and reactive) power demand requirements, (2) fulfilling local power reserve requirements, (3) buying firm real (and reactive) power from the grid, (4) buying reserve power from the grid, (5) exporting firm real (and reactive) power demand to remote load centers via the grid, (6) exporting reserve power via the grid, (7) wheeling of firm power demand to remote owned sites using the grid, and (8) wheeling reserve power to remote owned sites using grid. Practical implementation features of the computerized algorithms are also discussed with an illustrative case example.展开更多
文摘This paper presents a practical pricing model for backup reserve and wheeling, which attains a balanced strategy that ensures perceived benefits to both the buyer and the seller. The model and the associated computerized algorithm deal collectively with diverse issues, including: (1) fulfilling local firm real (and reactive) power demand requirements, (2) fulfilling local power reserve requirements, (3) buying firm real (and reactive) power from the grid, (4) buying reserve power from the grid, (5) exporting firm real (and reactive) power demand to remote load centers via the grid, (6) exporting reserve power via the grid, (7) wheeling of firm power demand to remote owned sites using the grid, and (8) wheeling reserve power to remote owned sites using grid. Practical implementation features of the computerized algorithms are also discussed with an illustrative case example.