This paper briefs the development policies and focal construction points of powerindustry in China in 10th Five-year Plan period, and in accordance with the developmentaltrends of international power technology, puts ...This paper briefs the development policies and focal construction points of powerindustry in China in 10th Five-year Plan period, and in accordance with the developmentaltrends of international power technology, puts forward the key technological problems tobe studies in China power industry currently.[展开更多
Floating photovoltaic systems installed in water bodies such as natural lakes or dams reservoirs, have attracted increased worldwide attention since 2011 and have already been deployed in several countries, including ...Floating photovoltaic systems installed in water bodies such as natural lakes or dams reservoirs, have attracted increased worldwide attention since 2011 and have already been deployed in several countries, including Japan, South Korea and USA. In Brazil, pilot-projects were announced in the reservoirs of hydroelectric power plants of Balbina (State of Amazonas) and Sobradinho (State of Bahia). Several advantages, not necessarily valid in Brazil, are mentioned for deploying this kind of technology, such as an increase in energy generation, reduction of water losses through evaporation, low environmental impact, no occupation of land etc. In this article, several of these allegations are analyzed preliminarily under the Brazilian point of view, and relevant considerations are presented. It is concluded that the technical and economic advantages of floating photovoltaic systems are not yet clear in Brazil and that pilot projects, such as those under way, should be used to clarify several important aspects related to them.展开更多
Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control(DTFC) of a variable speed pumped storage power plant(V...Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control(DTFC) of a variable speed pumped storage power plant(VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP's control strategies is studied. At the first, a wind turbine with the capacity 2.2 k W and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts(including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter(2LVSC) and three-level voltage source converter(3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion(THD) and ripple of rotor torque and flux.展开更多
This paper presents a comprehensive overview study of the DDPMSG (direct driven permanent magnet synchronous generator) for wind energy generation system. Wind turbine controls are provided. The PMSG (permanent mag...This paper presents a comprehensive overview study of the DDPMSG (direct driven permanent magnet synchronous generator) for wind energy generation system. Wind turbine controls are provided. The PMSG (permanent magnet synchronous generator) is introduced as construction and model. Configurations of different power converters are presented for use with DDPMSG in wind systems at variable speed operation and maximum power capture. Control techniques for the system are discussed for both machine-side and grid-side in details. Grid integration is provided with focus on how to insure power quality of the system and the performance at disturbances.展开更多
The control strategy is one of the most important renewable technology,and an increasing number of multi-MW wind turbines are being developed with a variable speed-variable pitch(VS-VP)technology.The main objective of...The control strategy is one of the most important renewable technology,and an increasing number of multi-MW wind turbines are being developed with a variable speed-variable pitch(VS-VP)technology.The main objective of adopting a VS-VP technology is to improve the fast response speed and capture maximum energy.But the power generated by wind turbine changes rapidly because of the continuous fluctuation of wind speed and direction.At the same time,wind energy conversion systems are of high order,time delays and strong nonlinear characteristics because of many uncertain factors.Based on analyzing the all dynamic processes of wind turbine,a kind of layered multi-mode optimal control strategy is presented which is that three control strategies:bang-bang,fuzzy and adaptive proportional integral derivative(PID)are adopted according to different stages and expected performance of wind turbine to capture optimum wind power,compensate the nonlinearity and improve the wind turbine performance at low,rated and high wind speed.展开更多
An electricity generation planning model of the six major Chinese power grids was developed based on the General Algebraic Modeling System to evaluate and analyze the CDM (clean development mechanism), including con...An electricity generation planning model of the six major Chinese power grids was developed based on the General Algebraic Modeling System to evaluate and analyze the CDM (clean development mechanism), including consideration of the environmental co-benefits of reductions in air pollutants (SO~, NO~ and particulate matter) achieved by advanced electricity generation technologies incorporating CCS (carbon capture and storage). An objective function was developed that included revenue from sales of electric power, total system cost, the cost of CO2 transport and storage, and emissions reduction co-benefits for SOx, NO~, and particulate matter. The objective function was minimized using an optimization model. We also developed a method for evaluating and analyzing the potential for transferring advanced power generation technologies into the Chinese power system through the CDM. We found that: (1) thermal power generation is predominant in the Chinese electricity system and will remain so for a long time; (2) advanced thermal plants are being installed as a result of the CDM, which contribute to decreasing emissions of CO2 and other air pollutants; and (3) CCS projects have significant potential to reduce substantial and sustained CO2 emissions from the Chinese power and industrial sectors.展开更多
The installed capacity of a large scale wind power plant will be up to a number of hundreds MW, and the wind power is transmitted to load centers through long distance transmission lines with 220 kV, 500 kV, or 750 kV...The installed capacity of a large scale wind power plant will be up to a number of hundreds MW, and the wind power is transmitted to load centers through long distance transmission lines with 220 kV, 500 kV, or 750 kV. Therefore, it is necessary not only considering the power transmission line between a wind power plant and the first connection node of the power network, but also the power network among the group of those wind power plants in a wind power base, the integration network from the base to the existed grids, as well as the distribution and consumption of the wind power generation by loads. Meanwhile, the impact of wind power stochastic fluctuation on power systems must be studied. In recent years, wind power prediction technology has been studied by the utilities and wind power plants. As a matter of fact, some European countries have used this prediction technology as a tool in national power dispatch centers and wind power companies.展开更多
This paper presents the present status of sulfur dioxide emission from thermal plants in China, tells the main problems existing in its emission control and finally gives out suggestions to the problems, that is, to c...This paper presents the present status of sulfur dioxide emission from thermal plants in China, tells the main problems existing in its emission control and finally gives out suggestions to the problems, that is, to constitute complete standards and regulations and enhancesupervision accordingly.展开更多
This paper introduced the status quo of wind power and wind power generation technology. Focusing on the introduction of wind power generating system ibrational self-consistent field(VSCF), program implementation in...This paper introduced the status quo of wind power and wind power generation technology. Focusing on the introduction of wind power generating system ibrational self-consistent field(VSCF), program implementation included Alternating Current (AC)-Direct Current (DC)-AC conversion system, magnetic field modulation generator system, doubly-fed generator system etc. Among these, doubly-fed generator system is the trend. Where to build the wind farm is very important, so a perfect site is needed. Wind power generation will have a bright future. As long as the wind power can be linked to the grid in large scale.展开更多
Nowadays, electronic devices are more and more integrated into everyday life. These seamless integrations focus on mobility, but at the same time strive to be unobtrusive to the end user. With the introduction of pers...Nowadays, electronic devices are more and more integrated into everyday life. These seamless integrations focus on mobility, but at the same time strive to be unobtrusive to the end user. With the introduction of personal data assistants and intelligent cellular phones for the searching of the website, true mobile computing is closer than ever. However, battery technology, which powers most of these mobile connectivity solutions, has not kept up the same pace of improvement. The paper describes a methodology for the design and performance of a self-excited permanent-magnet generator applied to low power supplies. It combines an analytical field model, a lumped reluctance equivalent magnetic circuit, and an equivalent electrical circuit. An illustrated example of a 15-mW, 290-r/min generator is given, and the analysis techniques are validated by measurements on a prototype system.展开更多
Numerous innovative heat recovery-to-power technologies have been resourcefully and technologically exploited to bridge the growing gap between energy needs and its sustainable and affordable supply.Among them,the pro...Numerous innovative heat recovery-to-power technologies have been resourcefully and technologically exploited to bridge the growing gap between energy needs and its sustainable and affordable supply.Among them,the proposed trilateral-cycle(TLC) power system exhibits high thermodynamic efficiency during heat recovery-to-power from low-to-medium temperature heat sources.The TLCs are proposed and analysed using n-pentane as working fluid for waste heat recovery-to-power generation from low-grade heat source to evaluate the thermodynamic efficiency of the cycles.Four different single stage TLC configurations with distinct working principles are modelled thermodynamically using engineering equation solver.Based on the thermodynamic framework,thermodynamic performance simulation and efficiency analysis of the cycles as well as the exergy efficiencies of the heating and condensing processes are carried out and compared in their efficiency.The results show that the simple TLC,recuperated TLC,reheat TLC and regenerative TLC operating at subcritical conditions with cycle high temperature of 473 K can attain thermal efficiencies of 21.97%,23.91%,22.07% and 22.9%,respectively.The recuperated TLC attains the highest thermodynamic efficiency at the cycle high temperature because of its lowest exergy destruction rates in the heat exchanger and condenser.The efficiency analysis carried out would assist in guiding thermodynamic process development and thermal integration of the proposed cycles.展开更多
文摘This paper briefs the development policies and focal construction points of powerindustry in China in 10th Five-year Plan period, and in accordance with the developmentaltrends of international power technology, puts forward the key technological problems tobe studies in China power industry currently.[
文摘Floating photovoltaic systems installed in water bodies such as natural lakes or dams reservoirs, have attracted increased worldwide attention since 2011 and have already been deployed in several countries, including Japan, South Korea and USA. In Brazil, pilot-projects were announced in the reservoirs of hydroelectric power plants of Balbina (State of Amazonas) and Sobradinho (State of Bahia). Several advantages, not necessarily valid in Brazil, are mentioned for deploying this kind of technology, such as an increase in energy generation, reduction of water losses through evaporation, low environmental impact, no occupation of land etc. In this article, several of these allegations are analyzed preliminarily under the Brazilian point of view, and relevant considerations are presented. It is concluded that the technical and economic advantages of floating photovoltaic systems are not yet clear in Brazil and that pilot projects, such as those under way, should be used to clarify several important aspects related to them.
基金the output of a research project (Title: Application of Doubly Fed Asynchronous machine in Pumped Storage Hydropower Plant in Generate Mode, supported by Islamic Azad University South Tehran Branch)
文摘Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control(DTFC) of a variable speed pumped storage power plant(VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP's control strategies is studied. At the first, a wind turbine with the capacity 2.2 k W and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts(including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter(2LVSC) and three-level voltage source converter(3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion(THD) and ripple of rotor torque and flux.
文摘This paper presents a comprehensive overview study of the DDPMSG (direct driven permanent magnet synchronous generator) for wind energy generation system. Wind turbine controls are provided. The PMSG (permanent magnet synchronous generator) is introduced as construction and model. Configurations of different power converters are presented for use with DDPMSG in wind systems at variable speed operation and maximum power capture. Control techniques for the system are discussed for both machine-side and grid-side in details. Grid integration is provided with focus on how to insure power quality of the system and the performance at disturbances.
基金Science & Technology Development Foundation of Shanghai,China(No.062158017)Postdoctoral Foundation of Shanghai,China(No.05R214133)Postdoctoral Foundation of China(No.2005038435)
文摘The control strategy is one of the most important renewable technology,and an increasing number of multi-MW wind turbines are being developed with a variable speed-variable pitch(VS-VP)technology.The main objective of adopting a VS-VP technology is to improve the fast response speed and capture maximum energy.But the power generated by wind turbine changes rapidly because of the continuous fluctuation of wind speed and direction.At the same time,wind energy conversion systems are of high order,time delays and strong nonlinear characteristics because of many uncertain factors.Based on analyzing the all dynamic processes of wind turbine,a kind of layered multi-mode optimal control strategy is presented which is that three control strategies:bang-bang,fuzzy and adaptive proportional integral derivative(PID)are adopted according to different stages and expected performance of wind turbine to capture optimum wind power,compensate the nonlinearity and improve the wind turbine performance at low,rated and high wind speed.
文摘An electricity generation planning model of the six major Chinese power grids was developed based on the General Algebraic Modeling System to evaluate and analyze the CDM (clean development mechanism), including consideration of the environmental co-benefits of reductions in air pollutants (SO~, NO~ and particulate matter) achieved by advanced electricity generation technologies incorporating CCS (carbon capture and storage). An objective function was developed that included revenue from sales of electric power, total system cost, the cost of CO2 transport and storage, and emissions reduction co-benefits for SOx, NO~, and particulate matter. The objective function was minimized using an optimization model. We also developed a method for evaluating and analyzing the potential for transferring advanced power generation technologies into the Chinese power system through the CDM. We found that: (1) thermal power generation is predominant in the Chinese electricity system and will remain so for a long time; (2) advanced thermal plants are being installed as a result of the CDM, which contribute to decreasing emissions of CO2 and other air pollutants; and (3) CCS projects have significant potential to reduce substantial and sustained CO2 emissions from the Chinese power and industrial sectors.
文摘The installed capacity of a large scale wind power plant will be up to a number of hundreds MW, and the wind power is transmitted to load centers through long distance transmission lines with 220 kV, 500 kV, or 750 kV. Therefore, it is necessary not only considering the power transmission line between a wind power plant and the first connection node of the power network, but also the power network among the group of those wind power plants in a wind power base, the integration network from the base to the existed grids, as well as the distribution and consumption of the wind power generation by loads. Meanwhile, the impact of wind power stochastic fluctuation on power systems must be studied. In recent years, wind power prediction technology has been studied by the utilities and wind power plants. As a matter of fact, some European countries have used this prediction technology as a tool in national power dispatch centers and wind power companies.
文摘This paper presents the present status of sulfur dioxide emission from thermal plants in China, tells the main problems existing in its emission control and finally gives out suggestions to the problems, that is, to constitute complete standards and regulations and enhancesupervision accordingly.
文摘This paper introduced the status quo of wind power and wind power generation technology. Focusing on the introduction of wind power generating system ibrational self-consistent field(VSCF), program implementation included Alternating Current (AC)-Direct Current (DC)-AC conversion system, magnetic field modulation generator system, doubly-fed generator system etc. Among these, doubly-fed generator system is the trend. Where to build the wind farm is very important, so a perfect site is needed. Wind power generation will have a bright future. As long as the wind power can be linked to the grid in large scale.
文摘Nowadays, electronic devices are more and more integrated into everyday life. These seamless integrations focus on mobility, but at the same time strive to be unobtrusive to the end user. With the introduction of personal data assistants and intelligent cellular phones for the searching of the website, true mobile computing is closer than ever. However, battery technology, which powers most of these mobile connectivity solutions, has not kept up the same pace of improvement. The paper describes a methodology for the design and performance of a self-excited permanent-magnet generator applied to low power supplies. It combines an analytical field model, a lumped reluctance equivalent magnetic circuit, and an equivalent electrical circuit. An illustrated example of a 15-mW, 290-r/min generator is given, and the analysis techniques are validated by measurements on a prototype system.
基金The University of Ilorin,Nigeria financially supported this research through scholarship grant from Tertiary Education Trust Fund
文摘Numerous innovative heat recovery-to-power technologies have been resourcefully and technologically exploited to bridge the growing gap between energy needs and its sustainable and affordable supply.Among them,the proposed trilateral-cycle(TLC) power system exhibits high thermodynamic efficiency during heat recovery-to-power from low-to-medium temperature heat sources.The TLCs are proposed and analysed using n-pentane as working fluid for waste heat recovery-to-power generation from low-grade heat source to evaluate the thermodynamic efficiency of the cycles.Four different single stage TLC configurations with distinct working principles are modelled thermodynamically using engineering equation solver.Based on the thermodynamic framework,thermodynamic performance simulation and efficiency analysis of the cycles as well as the exergy efficiencies of the heating and condensing processes are carried out and compared in their efficiency.The results show that the simple TLC,recuperated TLC,reheat TLC and regenerative TLC operating at subcritical conditions with cycle high temperature of 473 K can attain thermal efficiencies of 21.97%,23.91%,22.07% and 22.9%,respectively.The recuperated TLC attains the highest thermodynamic efficiency at the cycle high temperature because of its lowest exergy destruction rates in the heat exchanger and condenser.The efficiency analysis carried out would assist in guiding thermodynamic process development and thermal integration of the proposed cycles.