This paper presents the modelling, simulation and analysis of the dynamic behaviour of a mixed power network of 2.78 GW including hydro, thermal and wind power plants. The modelling of each power plant is described. T...This paper presents the modelling, simulation and analysis of the dynamic behaviour of a mixed power network of 2.78 GW including hydro, thermal and wind power plants. The modelling of each power plant is described. The set of parameters of the turbine speed governor of the hydroelectric power plant is determined with a specific identification procedure to achieve stable operation for different cases such as interconnected, isolated or islanded operation. The analysis of the stability of the entire mixed islanded power plant is investigated through time domain simulations for different sets of controllers parameters and for different disturbances (load rejection and turbulent wind speed profile).展开更多
文摘This paper presents the modelling, simulation and analysis of the dynamic behaviour of a mixed power network of 2.78 GW including hydro, thermal and wind power plants. The modelling of each power plant is described. The set of parameters of the turbine speed governor of the hydroelectric power plant is determined with a specific identification procedure to achieve stable operation for different cases such as interconnected, isolated or islanded operation. The analysis of the stability of the entire mixed islanded power plant is investigated through time domain simulations for different sets of controllers parameters and for different disturbances (load rejection and turbulent wind speed profile).