电力客服工单数据以文本形式记录电力用户的需求信息,合理的工单分类方法有利于准确定位用户需求,提升电力系统的运行效率.针对工单数据特征稀疏、依赖性强等问题,本文对基于字符级嵌入的长短时记忆网络(Bidirectional Long Short-Term ...电力客服工单数据以文本形式记录电力用户的需求信息,合理的工单分类方法有利于准确定位用户需求,提升电力系统的运行效率.针对工单数据特征稀疏、依赖性强等问题,本文对基于字符级嵌入的长短时记忆网络(Bidirectional Long Short-Term Memory network,BiLSTM)和卷积神经网络(Convolution Neural Network,CNN)组合的结构模型进行优化.该模型首先对Word2Vec模型训练的词向量进行降噪处理,得到文本的特征表示;其次,利用BiLSTM网络递归地学习文本的时序信息,提取句子特征信息;再输入到双通道池化的CNN网络中,进行局部的特征提取.通过在真实客服工单数据集上的测试实验,验证了该模型在客服工单分类任务上的具有较好的精确性和鲁棒性.展开更多