A novel control strategy for three-phase shunt active power filter (SAPF) was proposed to improve its performance under non-ideal mains voltages. The approach was inspired by our finding that the classic instantaneous...A novel control strategy for three-phase shunt active power filter (SAPF) was proposed to improve its performance under non-ideal mains voltages. The approach was inspired by our finding that the classic instantaneous reactive power theory based algorithm was unsatisfactory in terms of isolating positive sequence fundamental active components exactly under non-ideal mains voltages. So, a modified ip-iq reference current calculation method was presented. With usage of the new method, not only the positive sequence but also the fundamental active current components can be accurately isolated from load current. A deadbeat closed-loop control model is built in order to eliminate both delay error and tracking error between reference voltages and compensation voltages under unbalanced and distorted mains voltages. Computer simulation results show that the proposed strategy is effective with better tracking ability and lower total harmonic distortion (THD). The strategy is also applied to a 10 kV substation with a local electrolysis manganese plant injecting a large amount of harmonics into the power system, and is proved to be more practical and efficient.展开更多
This paper presents a comprehensive overview study of the DDPMSG (direct driven permanent magnet synchronous generator) for wind energy generation system. Wind turbine controls are provided. The PMSG (permanent mag...This paper presents a comprehensive overview study of the DDPMSG (direct driven permanent magnet synchronous generator) for wind energy generation system. Wind turbine controls are provided. The PMSG (permanent magnet synchronous generator) is introduced as construction and model. Configurations of different power converters are presented for use with DDPMSG in wind systems at variable speed operation and maximum power capture. Control techniques for the system are discussed for both machine-side and grid-side in details. Grid integration is provided with focus on how to insure power quality of the system and the performance at disturbances.展开更多
In recent years, the increasing application of nonlinear and unbalanced electronic equipment and large single phase loads have made voltage imbalance a serious problem in power distribution systems. A novel approach h...In recent years, the increasing application of nonlinear and unbalanced electronic equipment and large single phase loads have made voltage imbalance a serious problem in power distribution systems. A novel approach has been proposed to eliminate voltage imbalance and disturbances. The main strategy of this scheme is based on series active filter. By improving control circuit toward existing schemes and proposing a new strategy to control the voltage amplitude, simultaneous elimination of voltage imbalance, faults, voltage harmonics and also compensation of voltage drop in transmission lines become possible. Eventually, the voltage on the load side is a perfectly balanced three phase voltage with specific proper amplitude. The proposed scheme has been simulated in a test network and the results show high capability of this scheme for the complete elimination of imbalance without phase shift.展开更多
A novel three-phase active power filter (APF) circuit with photovoltaic (PV) system to improve the quality of service and to reduce the capacity of energy storage capacitor is presented. The energy balance concept...A novel three-phase active power filter (APF) circuit with photovoltaic (PV) system to improve the quality of service and to reduce the capacity of energy storage capacitor is presented. The energy balance concept and sampling technique were used to simplify the calculation algorithm for the required utility source current and to control the voltage of the energy storage capacitor. The feasibility was verified by using the Pspice simulations and experiments. When the APF mode was used during non-operational period, not only the utilization rate, power factor and power quality could be improved, but also the capacity of energy storage capacitor could sparing. As the results, the advantages of the APF circuit are simplicity of control circuits, low cost, and good transient response.展开更多
基金Project(JC200903180555A) supported by Shenzhen City Science and Technology Plan, China
文摘A novel control strategy for three-phase shunt active power filter (SAPF) was proposed to improve its performance under non-ideal mains voltages. The approach was inspired by our finding that the classic instantaneous reactive power theory based algorithm was unsatisfactory in terms of isolating positive sequence fundamental active components exactly under non-ideal mains voltages. So, a modified ip-iq reference current calculation method was presented. With usage of the new method, not only the positive sequence but also the fundamental active current components can be accurately isolated from load current. A deadbeat closed-loop control model is built in order to eliminate both delay error and tracking error between reference voltages and compensation voltages under unbalanced and distorted mains voltages. Computer simulation results show that the proposed strategy is effective with better tracking ability and lower total harmonic distortion (THD). The strategy is also applied to a 10 kV substation with a local electrolysis manganese plant injecting a large amount of harmonics into the power system, and is proved to be more practical and efficient.
文摘This paper presents a comprehensive overview study of the DDPMSG (direct driven permanent magnet synchronous generator) for wind energy generation system. Wind turbine controls are provided. The PMSG (permanent magnet synchronous generator) is introduced as construction and model. Configurations of different power converters are presented for use with DDPMSG in wind systems at variable speed operation and maximum power capture. Control techniques for the system are discussed for both machine-side and grid-side in details. Grid integration is provided with focus on how to insure power quality of the system and the performance at disturbances.
文摘In recent years, the increasing application of nonlinear and unbalanced electronic equipment and large single phase loads have made voltage imbalance a serious problem in power distribution systems. A novel approach has been proposed to eliminate voltage imbalance and disturbances. The main strategy of this scheme is based on series active filter. By improving control circuit toward existing schemes and proposing a new strategy to control the voltage amplitude, simultaneous elimination of voltage imbalance, faults, voltage harmonics and also compensation of voltage drop in transmission lines become possible. Eventually, the voltage on the load side is a perfectly balanced three phase voltage with specific proper amplitude. The proposed scheme has been simulated in a test network and the results show high capability of this scheme for the complete elimination of imbalance without phase shift.
文摘A novel three-phase active power filter (APF) circuit with photovoltaic (PV) system to improve the quality of service and to reduce the capacity of energy storage capacitor is presented. The energy balance concept and sampling technique were used to simplify the calculation algorithm for the required utility source current and to control the voltage of the energy storage capacitor. The feasibility was verified by using the Pspice simulations and experiments. When the APF mode was used during non-operational period, not only the utilization rate, power factor and power quality could be improved, but also the capacity of energy storage capacitor could sparing. As the results, the advantages of the APF circuit are simplicity of control circuits, low cost, and good transient response.