Based on the traditional active steering system, a novel active steering system integrated with electric power steering function was introduced, which can achieve the functions of both active steering and electric pow...Based on the traditional active steering system, a novel active steering system integrated with electric power steering function was introduced, which can achieve the functions of both active steering and electric power steering. In view of the interference from road random signal and sensor noise in the novel active steering system, the H∞ control model of the novel active steering system was built. With satisfying steering feel, good robust performance and steering stability being the control objectives, the H∞ controller for the novel active front steering (AFS) system was designed. The simulation results show that the novel AFS system with H∞ control strategy can attenuate the road interference quickly, and there is no resonance peak in the bode diagram. It can make the driver obtain more useful information in the low frequency range, and attenuate the road interference better in the high frequency range, thus the driver can get more satisfying road feeling. Therefore, the designed H∞ controller can synthesize the advantages of both robust performance and robust stability, and has certain contribution to the design of novel AFS system.展开更多
A review on thermal power plant automation development in China over 50 years is presented. The level of thermal power automation is introduced, especially for 200 MW and above units which are clarified into three cat...A review on thermal power plant automation development in China over 50 years is presented. The level of thermal power automation is introduced, especially for 200 MW and above units which are clarified into three categories by grade. The conditions, existing problems, relevant solutions and policies are summarized chronologically in aspects of centralized control, automatic regulation and controllability of main and auxiliary units, turbine control system, furnace security protection, and computer application in thermal power plants. This paper also points out the development tendency of thermal power plant automation and concepts of some vocabularies.展开更多
基金Foundation item: Projects(51005115, 51205191) supported by the National Natural Science Foundation of China Project(2012-NELEV-03) supported by the Research Foundation of National Engineering Laboratory for Electric Vehicles, China+2 种基金 Project(kfjj 120105) supported by the Visiting Scholar Foundation of the State Key Laboratory of Mechanical Transmission in Chongqing University, China Project supported by the Funds from the Postgraduate Creative Base in Nanjing University of Areonautics and Astronautics, China Project supported by the Fundamental Research Funds for the Central Universities, China
文摘Based on the traditional active steering system, a novel active steering system integrated with electric power steering function was introduced, which can achieve the functions of both active steering and electric power steering. In view of the interference from road random signal and sensor noise in the novel active steering system, the H∞ control model of the novel active steering system was built. With satisfying steering feel, good robust performance and steering stability being the control objectives, the H∞ controller for the novel active front steering (AFS) system was designed. The simulation results show that the novel AFS system with H∞ control strategy can attenuate the road interference quickly, and there is no resonance peak in the bode diagram. It can make the driver obtain more useful information in the low frequency range, and attenuate the road interference better in the high frequency range, thus the driver can get more satisfying road feeling. Therefore, the designed H∞ controller can synthesize the advantages of both robust performance and robust stability, and has certain contribution to the design of novel AFS system.
文摘A review on thermal power plant automation development in China over 50 years is presented. The level of thermal power automation is introduced, especially for 200 MW and above units which are clarified into three categories by grade. The conditions, existing problems, relevant solutions and policies are summarized chronologically in aspects of centralized control, automatic regulation and controllability of main and auxiliary units, turbine control system, furnace security protection, and computer application in thermal power plants. This paper also points out the development tendency of thermal power plant automation and concepts of some vocabularies.