A test system of the permeability of broken coal samples mainly consists of a CMT5305 electronic universal test machine, crushed rock compaction containing cylinder and a self-designed seepage circuit, which is compos...A test system of the permeability of broken coal samples mainly consists of a CMT5305 electronic universal test machine, crushed rock compaction containing cylinder and a self-designed seepage circuit, which is composed of a gear pump, a reversing valve, a relief valve and other components. By using the steady penetration method, the permeability and non-Darcy flow β factor of broken coal samples under five different porosity levels were measured, the grain diameters of the coal samples were selected as 2.5-5 mm, 5-10 mm, 10-15 mm, 15-20 mm, 20-25 mm and 2.5-25 ram, respectively. After measuring the permeability under each porosity, the overfall pressure of the relief valve continuously increased until the coal sample was broken down. In this way, the flow type of liquid inside the broken coal samples changed from seepage to pipe flow. The correlation between breakdown pressure gradient (BPG) and porosity was analyzed, and the BPG was compared with the pressure gradient when seepage instability occurred. The results show that, ①the non-Darcy flow β factor was negative before broken coal samples with six kinds of diameters were broken down; ②the BPG of coal samples with a grain size of 2.5-25 mm was lower than that of the others; ③ the BPG of coal samples with a single diameter under the same porosity increased as the grain size increased; ④ the BPG could be fitted by an exponential function with porosity, and the exponent decreased as the grain size increased for coal samples with a single diameter; ⑤ the BPG was slightly less than the seepage instability pressure gradient. The change in liquid flow type from seepage to pipe flow could be regarded as the performance of the seepage instability.展开更多
The partially coherent beams propagating through random media have been used in the past to enhance effect of nonlinear optical interaction. Moreover, after propagation through a random (or turbulent) medium the coh...The partially coherent beams propagating through random media have been used in the past to enhance effect of nonlinear optical interaction. Moreover, after propagation through a random (or turbulent) medium the coherent beam becomes a partially coherent one. In this research, the analytical formula for the average intensity of Gaussian beam propagating through random medium is derived and the influence of coherent partiality on optical gradient force acting on dielectric particle rounded by a random media is investigated.展开更多
基金Supported by the National Natural Science Foundation of China (50974107) the University Graduate Research and Innovation Project in Jiangsu Province (CXZZI2_0924)+1 种基金 the Applied Basic Research Project of Yancheng Institute of Technology (XKR2010010) the State Key Laboratory Open Foundation of Deep Geomechanics and Underground Engineering of China University of Mining and Technology (SKLGDUEK1014)
文摘A test system of the permeability of broken coal samples mainly consists of a CMT5305 electronic universal test machine, crushed rock compaction containing cylinder and a self-designed seepage circuit, which is composed of a gear pump, a reversing valve, a relief valve and other components. By using the steady penetration method, the permeability and non-Darcy flow β factor of broken coal samples under five different porosity levels were measured, the grain diameters of the coal samples were selected as 2.5-5 mm, 5-10 mm, 10-15 mm, 15-20 mm, 20-25 mm and 2.5-25 ram, respectively. After measuring the permeability under each porosity, the overfall pressure of the relief valve continuously increased until the coal sample was broken down. In this way, the flow type of liquid inside the broken coal samples changed from seepage to pipe flow. The correlation between breakdown pressure gradient (BPG) and porosity was analyzed, and the BPG was compared with the pressure gradient when seepage instability occurred. The results show that, ①the non-Darcy flow β factor was negative before broken coal samples with six kinds of diameters were broken down; ②the BPG of coal samples with a grain size of 2.5-25 mm was lower than that of the others; ③ the BPG of coal samples with a single diameter under the same porosity increased as the grain size increased; ④ the BPG could be fitted by an exponential function with porosity, and the exponent decreased as the grain size increased for coal samples with a single diameter; ⑤ the BPG was slightly less than the seepage instability pressure gradient. The change in liquid flow type from seepage to pipe flow could be regarded as the performance of the seepage instability.
文摘The partially coherent beams propagating through random media have been used in the past to enhance effect of nonlinear optical interaction. Moreover, after propagation through a random (or turbulent) medium the coherent beam becomes a partially coherent one. In this research, the analytical formula for the average intensity of Gaussian beam propagating through random medium is derived and the influence of coherent partiality on optical gradient force acting on dielectric particle rounded by a random media is investigated.