The dynamic behavior of two collinear cracks in magneto-electro-elastic composites under harmonic anti-plane shear waves is studied using the Schmidt method for the permeable crack surface conditions. By using the Fou...The dynamic behavior of two collinear cracks in magneto-electro-elastic composites under harmonic anti-plane shear waves is studied using the Schmidt method for the permeable crack surface conditions. By using the Fourier transform, the problem can be solved with a set of triple integral equations in which the unknown variable is the jump of the displacements across the crack surfaces. In solving the triple integral equations, the jump of the displacements across the crack surface is expanded in a series of Jacobi polynomials. It can be obtained that the stress field is independent of the electric field and the magnetic flux.展开更多
The study of peristaltic flow of a Carreau fluid in a non-uniform tube under the con- sideration of long wavelength is presented. The flow is investigated in a wave frame of reference moving with velocity of the wave ...The study of peristaltic flow of a Carreau fluid in a non-uniform tube under the con- sideration of long wavelength is presented. The flow is investigated in a wave frame of reference moving with velocity of the wave e. Numerical integration has been used to obtain the graphical results for pressure rise and frictional forces. The effects of various emerging parameters are investigated through graphs.展开更多
文摘The dynamic behavior of two collinear cracks in magneto-electro-elastic composites under harmonic anti-plane shear waves is studied using the Schmidt method for the permeable crack surface conditions. By using the Fourier transform, the problem can be solved with a set of triple integral equations in which the unknown variable is the jump of the displacements across the crack surfaces. In solving the triple integral equations, the jump of the displacements across the crack surface is expanded in a series of Jacobi polynomials. It can be obtained that the stress field is independent of the electric field and the magnetic flux.
文摘The study of peristaltic flow of a Carreau fluid in a non-uniform tube under the con- sideration of long wavelength is presented. The flow is investigated in a wave frame of reference moving with velocity of the wave e. Numerical integration has been used to obtain the graphical results for pressure rise and frictional forces. The effects of various emerging parameters are investigated through graphs.