The new techniques were presented for preventing undesirable distance relay maloperation during voltage collapse and power swings in transmission grids. Initially, the work focused on the development of a fast detecti...The new techniques were presented for preventing undesirable distance relay maloperation during voltage collapse and power swings in transmission grids. Initially, the work focused on the development of a fast detection of voltage collapse and a three-phase fault at transmission lines by using under impedance fault detector (UIFD) and support vector machine (SVM). Likewise, an intelligent approach was developed to discriminate a fault, stable swing and unstable swing, for correct distance relay operation by using the S-transform and the probabilistic neural network (PNN). To illustrate the effectiveness of the proposed techniques, simulations were carried out on the IEEE 39-bus test system using the PSS/E and MATLAB software.展开更多
An improved network flow algorithm, which includes the minimum cost network flow and the same period network flow, is proposed to solve the optimization of cascaded hydroelectric power plants in a competitive electric...An improved network flow algorithm, which includes the minimum cost network flow and the same period network flow, is proposed to solve the optimization of cascaded hydroelectric power plants in a competitive electricity market. The typical network flow is used to find the feasible flow and add the discharge water to different cascaded hydroelectric power plants at the same step. The same period network flow is used to find the optimal flow and add the power output at a different step. This new algorithm retains the advantages of the typical network flow, such as simplicity and ease of realization. The result of the case analysis indicates that the new algorithm can achieve high calculation precision and can be used to calculate the optimal operation of cascaded hydroelectric power plants.展开更多
This paper mainly is study on power system working state with neutral point different grounded methods, when the power system is normal working and the single-phase grounding. And further analysis of the different ope...This paper mainly is study on power system working state with neutral point different grounded methods, when the power system is normal working and the single-phase grounding. And further analysis of the different operating modes of voltage and current relationships, expounds the different operation occasions and characteristics.展开更多
This paper develops a unified methodology for a real-time speed control of brushless direct-current motor drive systems in the presence of measurement noise and load torque disturbance. First, the mathematical model a...This paper develops a unified methodology for a real-time speed control of brushless direct-current motor drive systems in the presence of measurement noise and load torque disturbance. First, the mathematical model and hardware structure of system is established. Next, an optimal state feed back controller using the Kalman filter state estimation technique is derived. This is followed by an adaptive control algorithm to compensate for the effects of noise and disturbance. Those two algorithms working together can provide a very-high-speed regulation and dynamic response over a wide range of operating conditions. Simulated responses are presented to highlight the effectiveness of the proposed control strategy.展开更多
文摘The new techniques were presented for preventing undesirable distance relay maloperation during voltage collapse and power swings in transmission grids. Initially, the work focused on the development of a fast detection of voltage collapse and a three-phase fault at transmission lines by using under impedance fault detector (UIFD) and support vector machine (SVM). Likewise, an intelligent approach was developed to discriminate a fault, stable swing and unstable swing, for correct distance relay operation by using the S-transform and the probabilistic neural network (PNN). To illustrate the effectiveness of the proposed techniques, simulations were carried out on the IEEE 39-bus test system using the PSS/E and MATLAB software.
文摘An improved network flow algorithm, which includes the minimum cost network flow and the same period network flow, is proposed to solve the optimization of cascaded hydroelectric power plants in a competitive electricity market. The typical network flow is used to find the feasible flow and add the discharge water to different cascaded hydroelectric power plants at the same step. The same period network flow is used to find the optimal flow and add the power output at a different step. This new algorithm retains the advantages of the typical network flow, such as simplicity and ease of realization. The result of the case analysis indicates that the new algorithm can achieve high calculation precision and can be used to calculate the optimal operation of cascaded hydroelectric power plants.
文摘This paper mainly is study on power system working state with neutral point different grounded methods, when the power system is normal working and the single-phase grounding. And further analysis of the different operating modes of voltage and current relationships, expounds the different operation occasions and characteristics.
文摘This paper develops a unified methodology for a real-time speed control of brushless direct-current motor drive systems in the presence of measurement noise and load torque disturbance. First, the mathematical model and hardware structure of system is established. Next, an optimal state feed back controller using the Kalman filter state estimation technique is derived. This is followed by an adaptive control algorithm to compensate for the effects of noise and disturbance. Those two algorithms working together can provide a very-high-speed regulation and dynamic response over a wide range of operating conditions. Simulated responses are presented to highlight the effectiveness of the proposed control strategy.