加速功率型电力系统稳定器(Power System Stabilizer,PSS)在发动机深度调峰进相中,由于计算误差大,有可能导致功率低频、振荡等问题的产生。为解决这些问题,阐述如何进行系统的稳定性分析,并且借助仿真测试验证系统分析的合理性,具体通...加速功率型电力系统稳定器(Power System Stabilizer,PSS)在发动机深度调峰进相中,由于计算误差大,有可能导致功率低频、振荡等问题的产生。为解决这些问题,阐述如何进行系统的稳定性分析,并且借助仿真测试验证系统分析的合理性,具体通过励磁装置采用电气量计算转速的方法,求解得到有功、无功状态下的转速灵敏度数据并进行分析。通过这一分析验证现场理论分析的精准度,对系统稳定研究有一定的参考价值。展开更多
灰狼优化(grey wolf optimizer,GWO)算法作为一种新的、高效的群体智能优化算法,可应用于电力系统优化问题。提出了采用GWO算法的多机电力系统稳定器参数优化设计方案。将传统超前-滞后型电力系统稳定器(PSS)的参数设计建模为基于特征...灰狼优化(grey wolf optimizer,GWO)算法作为一种新的、高效的群体智能优化算法,可应用于电力系统优化问题。提出了采用GWO算法的多机电力系统稳定器参数优化设计方案。将传统超前-滞后型电力系统稳定器(PSS)的参数设计建模为基于特征值的二次性能目标优化问题,通过向左半复平面移动机电振荡特征值实现对不同运行状态下机电模态阻尼系数的最大化进行寻优。GWO算法具有对初始取值不敏感,优化效率较高和全局寻优性能好等特点,因此被用来迭代搜索最优PSS参数值。通过IEEE New England 39节点算例的特征值分析和非线性时域仿真,验证了基于GWO算法优化整定的电力系统PSS在各种系统运行状态下抑制系统机电振荡的有效性和鲁棒性,并通过与传统相位补偿方法设计的PSS阻尼性能对比,表明所提GWO算法优化PSS参数具有明显优越性。进一步的算法性能分析表明,GWO算法具有对初值不敏感和稳健性强等优点。展开更多
电力系统稳定器(power system stabilizer,PSS)是目前抑制电力系统低频振荡最经济、最有效的办法,PSS抑制低频振荡的效果很大程度依赖于参数好坏。传统的PSS设计方法需要测量励磁系统的无补偿滞后特性,然而,这种基于在线激励的方法可能...电力系统稳定器(power system stabilizer,PSS)是目前抑制电力系统低频振荡最经济、最有效的办法,PSS抑制低频振荡的效果很大程度依赖于参数好坏。传统的PSS设计方法需要测量励磁系统的无补偿滞后特性,然而,这种基于在线激励的方法可能会对系统稳定性造成危害。为此,提出了一种基于相量测量单元(phasormeasurement units,PMUs)实测扰动数据的PSS参数设计方法。首先推导了单机无穷大系统线性化模型中振荡时各物理量的相位关系,再利用多信号Prony辨识得到的相位计算励磁系统的相位滞后特性,最后采用相位补偿法设计PSS参数。该方法利用电网中自有的扰动数据,不需要施加激励信号,具有很好的工程应用价值。采用贵州电网PMU实测记录的两次扰动数据进行仿真,结果显示按照提出的方法得到的PSS参数能够进一步改善相关模式的阻尼特性,提高系统的稳定性,表明了该方法的有效性。展开更多
文摘加速功率型电力系统稳定器(Power System Stabilizer,PSS)在发动机深度调峰进相中,由于计算误差大,有可能导致功率低频、振荡等问题的产生。为解决这些问题,阐述如何进行系统的稳定性分析,并且借助仿真测试验证系统分析的合理性,具体通过励磁装置采用电气量计算转速的方法,求解得到有功、无功状态下的转速灵敏度数据并进行分析。通过这一分析验证现场理论分析的精准度,对系统稳定研究有一定的参考价值。
文摘灰狼优化(grey wolf optimizer,GWO)算法作为一种新的、高效的群体智能优化算法,可应用于电力系统优化问题。提出了采用GWO算法的多机电力系统稳定器参数优化设计方案。将传统超前-滞后型电力系统稳定器(PSS)的参数设计建模为基于特征值的二次性能目标优化问题,通过向左半复平面移动机电振荡特征值实现对不同运行状态下机电模态阻尼系数的最大化进行寻优。GWO算法具有对初始取值不敏感,优化效率较高和全局寻优性能好等特点,因此被用来迭代搜索最优PSS参数值。通过IEEE New England 39节点算例的特征值分析和非线性时域仿真,验证了基于GWO算法优化整定的电力系统PSS在各种系统运行状态下抑制系统机电振荡的有效性和鲁棒性,并通过与传统相位补偿方法设计的PSS阻尼性能对比,表明所提GWO算法优化PSS参数具有明显优越性。进一步的算法性能分析表明,GWO算法具有对初值不敏感和稳健性强等优点。
文摘电力系统稳定器(power system stabilizer,PSS)是目前抑制电力系统低频振荡最经济、最有效的办法,PSS抑制低频振荡的效果很大程度依赖于参数好坏。传统的PSS设计方法需要测量励磁系统的无补偿滞后特性,然而,这种基于在线激励的方法可能会对系统稳定性造成危害。为此,提出了一种基于相量测量单元(phasormeasurement units,PMUs)实测扰动数据的PSS参数设计方法。首先推导了单机无穷大系统线性化模型中振荡时各物理量的相位关系,再利用多信号Prony辨识得到的相位计算励磁系统的相位滞后特性,最后采用相位补偿法设计PSS参数。该方法利用电网中自有的扰动数据,不需要施加激励信号,具有很好的工程应用价值。采用贵州电网PMU实测记录的两次扰动数据进行仿真,结果显示按照提出的方法得到的PSS参数能够进一步改善相关模式的阻尼特性,提高系统的稳定性,表明了该方法的有效性。