期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
改进深度学习优化电力设备缺陷图像识别 被引量:6
1
作者 于彦良 李静力 王斌 《机械设计与制造》 北大核心 2021年第7期176-178,183,共4页
红外图像特征对具有发热特征的电力特设缺陷具有较好的表达能力,随着电力企业设备红外图像的积累,传统检测方法遇到效率和准确率瓶颈,为此,提出了基于改进Faster RCNN的缺陷识别算法,算法通过模型中RPN网络卷积核的优化,减少RPN网络的... 红外图像特征对具有发热特征的电力特设缺陷具有较好的表达能力,随着电力企业设备红外图像的积累,传统检测方法遇到效率和准确率瓶颈,为此,提出了基于改进Faster RCNN的缺陷识别算法,算法通过模型中RPN网络卷积核的优化,减少RPN网络的计算量,通过多分辨率特征融合提高网络对缺陷特征语义信息和细节定位信息的应用,最后通过自适应训练数据抽样提高正负训练样本抽取的有效性,从而提高算法缺陷识别准确率。实测数据实验表明,改进模型的目标函数可以在较少的迭代次数下实现稳定实收,在准确率、召回率和运行时间等评价指标上优于传统Faster RCNN模型、SIFT算子模型等已有模型,从而验证了算法的有效性和对不同背景干扰的有效性。 展开更多
关键词 电力设备缺陷识别 深度学习网络 改进Faster RCNN模型 多分辨率特征融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部