This paper presents a new electromagnetic functional material developed byelectron-less nickel deposition technique, with a single hollow micro-sphere as the core templateand a thin nickel layer as the shell. The micr...This paper presents a new electromagnetic functional material developed byelectron-less nickel deposition technique, with a single hollow micro-sphere as the core templateand a thin nickel layer as the shell. The micrograph taken by a scanning electron microscope showsthe microstructures of the materials in detail. Scattering parameters of the waveguide sample holderfilled with the materials have been obtained over X band. The electromagnetic parameters computedfrom the measured S parameters show that the material with metallic hollow spheres has as highrelative permeability μ'_r as 19.0 with about 0.6 magnetic loss tangent over the whole bandwidth.Compared to the material with non-metallic spheres, the permeability μ'_r and the magnetic losstangent μ'_r increase greatly, while the permittivity remains lower than 1.8.展开更多
Photoelectric property of polyaniline doped with dodecyl-benzene sulphonic acid (DBSA) is studied. The result shows that the concentration of carrier increases obviously, when polyaniline doped with DBSA is irradiated...Photoelectric property of polyaniline doped with dodecyl-benzene sulphonic acid (DBSA) is studied. The result shows that the concentration of carrier increases obviously, when polyaniline doped with DBSA is irradiated with light. Mixture of sensitive material is advantageous to the absorption of polyaniline in visible light spectrum, and the conductivity is also improved. The results of dielectric measurements on polyaniline doped with DBSA in an Al-PAn-DBSA-Al configuration as function of frequency and temperature are reported. The space-charge polarization phenomenon is observed. Carrier lifetime is microsecond magnitude and mobility is (0.001~0.1) cm 2/V·s, which are obtained by calculation or experiment. The active energy is obtained from the relation between conductivity and temperature. The conducting mechanism of PAn-DBSA is analyzed.展开更多
It is necessary to evaluate the interactions between the different functional layers in optoelectronic devices to optimize device performance.Recently,the I-rich allinorganic perovskite CsPbI2 Br has attracted tremend...It is necessary to evaluate the interactions between the different functional layers in optoelectronic devices to optimize device performance.Recently,the I-rich allinorganic perovskite CsPbI2 Br has attracted tremendous attention for use in solar cell applications because of its suitable band gap and favorable photo and thermal stabilities.It has been reported that the undesirable phase degradation of the photoactiveαphase CsPbI2 Br to the non-perovskiteδphase could be triggered by high humidity.To obtain stable devices,it is thus important to protect CsPbI2 Br from moisture.In this paper,CuI,a non-hygroscopic p-type hole-transporting material,is found to induce the phase degradation ofα-CsPbI2 Br to theδ-CsPbI2 Br.The rate and extent of phase degradation of CsPbI2 Br are closely associated with the heating temperature and coverage of a Cu I granular capping layer.This discovery is different from the widely reported water-induced phase degradation of CsPbI2 Br.Our work highlights the importance of careful selection of hole-transporting materials during the processing of I-rich all-inorganic CsPbX3(X=Br,I)perovskites to realize high-performance optoelectronic devices.展开更多
Self-assembled Fe_(3)O_(4)hierarchical microspheres(HMSs) were prepared by a one-pot synchronous reduction–self-assembling (SRSA) hydrothermal method.In this simple and inexpensive synthetic process,only glycerol,wat...Self-assembled Fe_(3)O_(4)hierarchical microspheres(HMSs) were prepared by a one-pot synchronous reduction–self-assembling (SRSA) hydrothermal method.In this simple and inexpensive synthetic process,only glycerol,water,and a single iron source (potassium ferricyanide (K3[Fe(CN)6]))were employed as reactants without additional reductants,surfactants,or additives.The iron source,K3[Fe(CN)6],and glycerol significantly affected the synthesis of Fe_(3)O_(4)HMSs.Fe_(3)O_(4)HMSs with a self-assembled spherical shape readily functioned as high-performance anode materials for lithiumion batteries with a specific capacity of>1000 mA h g^(-1)at0.5 A g^(-1)after 270 cycles.Further charging and discharging results revealed that Fe_(3)O_(4)HMSs displayed good reversible performance (>1000 mA h g^(-1)) and cycling stability (700 cycles) at 0.5 A g^(-1).Furthermore,as multifunctional materials,the as-obtained Fe_(3)O_(4)HMSs also exhibited high saturation magnetization (99.5 emu g^(-1)) at room temperature (25°C) and could be further employed as efficient and magnetically recyclable catalysts for the hydrogenation of nitro compounds.展开更多
Metal-organic frameworks(MOFs)and mechanoluminescent(ML)materials have been considered as two types of promising materials that have their own application fields.It would be amazing to endow one material with the adva...Metal-organic frameworks(MOFs)and mechanoluminescent(ML)materials have been considered as two types of promising materials that have their own application fields.It would be amazing to endow one material with the advantages of ML and MOFs,thus broadening their applications.However,there are quite few investigations on this topic,and the ML mechanism in ML-MOFs remains unclear.In this study,we proposed a strategy for developing ML-MOFs by doping lanthanide ions into the non-centrosymmetric SBD([Sr(μ-BDC)(DMF)]∞)MOF,and successfully synthesized a series of lanthanide-doped MOFs Ln-SBD(Ln=Tb,Dy,Sm,Eu)and Tb1-xEux-SBD(x=0.2,0.4,0.6,0.8)with multicolor ML.The lanthanide ions were uniformly distributed in the matrix of the SBD-MOF,and occupied the Sr site.The MLMOFs exhibited intense multicolor ML emissions varying from green to yellow to red by changing the co-doping ratios and species of lanthanide ions.The similar ML and photoluminescence(PL)spectra indicated that the ML emission was assigned to the radiative transition from the excited states to the ground states of lanthanide ions.The radiative transition was induced by the electron bombardment process that originated from the piezoelectric effect of the non-centrosymmetric SBD host.In addition,a pioneering temperature sensing research based on ML was carried out,which is promising for realizing dual-functional detection of stress and temperature without excitation light sources.This study gives a unique insight for developing more versatile and interesting smart materials by combining the versatility of MOF with the ML emission,imparting additional values to both MOF and ML materials.Moreover,this study provides a general rule for selecting MOFs with an acentric structure as the host for ML materials.展开更多
Energy harvesting is an appealing technology that makes use of the ambient energy which is otherwise wasted. Piezoelectric materials directly convert the elastic energy to the electric energy, and thus have a great ad...Energy harvesting is an appealing technology that makes use of the ambient energy which is otherwise wasted. Piezoelectric materials directly convert the elastic energy to the electric energy, and thus have a great advantage in scavenging vibrational energy for simplicity in device structure with relatively high power density. This paper provides an overview on the research of piezoelectric materials in energy harvesting in recent decades, from basics of piezoelectricity and working principle of energy harvesting with piezoelectric materials, to the progress of development of high-performance piezoelectrics including ceramics, single crystals and polymers, then to experimental attempts on the device fabrication and optimization, finally to perspective applications of piezoelectric energy harvesting(PEH). The criteria for selection of materials for PEH applications are introduced. Not only the figure of merit but also maximum allowable stress of materials are taken into account in the evaluation of their potential in achieving high energy density and output power density. The influence of the device configuration on the performance is also acknowledged and discussed. The magnitude and distribution of induced stress in the piezoelectric unit upon excitation by the vibration source play an important role in determining the output power density and can be tuned via proper design of device configuration without changing its resonant frequency. Approaches to address the issue of frequency match accompanying with the resonant mode are illustrated with literature examples. Usage of PEH devices can be extended to a variety of vibration sources in everyday life as well as in nature. Some appealing applications of PEH, such as in implantable and wearable devices, are reviewed.展开更多
With increasing demands for clean and sustainable energy, the advantages of high power density, high efficiency, and long life expectancy have made supercapacitors one of the major emerging devices for electrochemical...With increasing demands for clean and sustainable energy, the advantages of high power density, high efficiency, and long life expectancy have made supercapacitors one of the major emerging devices for electrochemical energy storage and power supply. However, one of the key challenges for SCs is their limited energy density, which has hindered their wider application in the field of energy storage. Despite significant progress has been achieved in the fabrication of high-energy density positive electrodes materials, negative electrode materials with high capacitance and a wide potential window are relatively less explored. In this review, we introduced some new negative electrode materials except for common carbon-based materials and what's more, based on our team's work recently, we put forward some new strategies to solve their inherent shortcoming as electrode material for SCs.展开更多
ZnO nanomaterials have been shown to have novel applications in optoelectronics, energy harvesting and piezotronics, due to their coupled semiconducting and piezoelectric properties. Here a functional nanogenerator (...ZnO nanomaterials have been shown to have novel applications in optoelectronics, energy harvesting and piezotronics, due to their coupled semiconducting and piezoelectric properties. Here a functional nanogenerator (FNG) based on ZnO nanowire arrays has been fabricated, which can be employed to detect vibration in both self-powered (SP) and external-powered (EP) modes. In SP mode, the vibration responses of the FNG can be measured through converting mechanical energy directly into an electrical signal. The FNG shows consistent alternating current responses (relative error 〈 0.37%) at regular frequencies from 1 to 15 Hz. In EP mode, the current responses of FNG are significantly enhanced via the piezotronic effect. Under a forward bias of 3 V, the sensor presented a sensitivity of 3700% and an accurate measurement (relative error 〈 0.91%) of vibration frequencies in the range 0.05-15 Hz. The results show that this type of functional nanogenerator sensor can detect vibration in both SP and EP modes according to the demands of the applications.展开更多
The non-radiative recombination loss caused by diverse defects within SnO_(2)electron transport layer(ETL),perovskite film,and their interface greatly hinders the further improvement of the performance and stability o...The non-radiative recombination loss caused by diverse defects within SnO_(2)electron transport layer(ETL),perovskite film,and their interface greatly hinders the further improvement of the performance and stability of flexible perovskite solar cells(PSCs).Therefore,it is urgent to develop an effective strategy to address these issues.Herein,a multifunctional material,phospho-ethanolamine(PE),is introduced into SnO_(2)aqueous colloids to suppress defects and prepare high-quality ETL.The results demonstrate that the incorporation of PE can significantly reduce the number of Sn dangling bonds due to the formation of new Sn–O–P bonds,which is beneficial to ameliorating the electrical properties of SnO_(2)and obtaining dense SnO_(2)film.Meanwhile,the amino group(NH_(2))of PE can interact with uncoordinated Pb^(2+)in perovskite,thereby suppressing SnO_(2)/perovskite interface defects and obtaining improved perovskite film quality.Consequently,the optimized flexible and rigid PSCs based on the SnO_(2)-PE composite ETL yield outstanding photoelectric conversion efficiency(PCE)of 18.48%and 21.61%,respectively.Moreover,flexible PSCs based on SnO_(2)-PE present excellent mechanical durability,and 90.6%of the original PCE is retained after 1000 bending cycles.展开更多
Faceted crystals with exposed highly reactive planes have attracted intensive investigations for applications. Herein, we demonstrate a general synthetic method to prepare mesocrystal Co3O4 with predominantly exposed ...Faceted crystals with exposed highly reactive planes have attracted intensive investigations for applications. Herein, we demonstrate a general synthetic method to prepare mesocrystal Co3O4 with predominantly exposed {111} reactive facets by the in situ thermal decomposition from Co(OH)2 nanoplatelets. The mesocrystal feature was identified by field emission scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and N2 isotherm analyses. When applied as anode material in lithium-ion batteries, mesocrystal Co3O4 nanoplatelets delivered a high specific capacity and an outstanding high rate performance. The superior electrochemical performance should be ascribed to the predominantly exposed {111} active facets and highly accessible surfaces. This synthetic strategy could be extended to prepare other mesocrystal functional nanomaterials.展开更多
文摘文章采用超磁致伸缩材料Terfenol-D(Tb0.37Dy0.63Fe2)、金属玻璃Metglas 2605SA1和压电材料PZT(Pb(Zr,Ti)O3),设计了一种基于功能梯度磁电复合材料的新型自偏置磁传感器.利用Metglas和Terfenol-D之间的磁导率和矫顽力差异产生较强的磁化梯度,打破原有的平衡状态,导致内建磁场产生,进一步提高了零偏置磁场下磁致伸缩材料的压磁系数和磁电响应.实验结果表明:该传感器获得了较高的低频和高频零偏置磁电电压系数,分别达到9.14m V/Oe和572 m V/Oe,并且谐振磁电电压输出和激励交变磁场之间呈线性变化关系.该自偏置磁传感器避免了传统磁电传感器对偏置磁场的依赖,具有制作简单、成本低、体积小,无需偏置磁场以及灵敏度高等优点.
文摘This paper presents a new electromagnetic functional material developed byelectron-less nickel deposition technique, with a single hollow micro-sphere as the core templateand a thin nickel layer as the shell. The micrograph taken by a scanning electron microscope showsthe microstructures of the materials in detail. Scattering parameters of the waveguide sample holderfilled with the materials have been obtained over X band. The electromagnetic parameters computedfrom the measured S parameters show that the material with metallic hollow spheres has as highrelative permeability μ'_r as 19.0 with about 0.6 magnetic loss tangent over the whole bandwidth.Compared to the material with non-metallic spheres, the permeability μ'_r and the magnetic losstangent μ'_r increase greatly, while the permittivity remains lower than 1.8.
文摘Photoelectric property of polyaniline doped with dodecyl-benzene sulphonic acid (DBSA) is studied. The result shows that the concentration of carrier increases obviously, when polyaniline doped with DBSA is irradiated with light. Mixture of sensitive material is advantageous to the absorption of polyaniline in visible light spectrum, and the conductivity is also improved. The results of dielectric measurements on polyaniline doped with DBSA in an Al-PAn-DBSA-Al configuration as function of frequency and temperature are reported. The space-charge polarization phenomenon is observed. Carrier lifetime is microsecond magnitude and mobility is (0.001~0.1) cm 2/V·s, which are obtained by calculation or experiment. The active energy is obtained from the relation between conductivity and temperature. The conducting mechanism of PAn-DBSA is analyzed.
基金supported primarily by the National Key Research and Development Program of China(2018YFA0209303)the National Natural Science Foundation of China(U1663228,51902153,51972165 and 61377051)the Fundamental Research Funds for the Central Universities of China。
文摘It is necessary to evaluate the interactions between the different functional layers in optoelectronic devices to optimize device performance.Recently,the I-rich allinorganic perovskite CsPbI2 Br has attracted tremendous attention for use in solar cell applications because of its suitable band gap and favorable photo and thermal stabilities.It has been reported that the undesirable phase degradation of the photoactiveαphase CsPbI2 Br to the non-perovskiteδphase could be triggered by high humidity.To obtain stable devices,it is thus important to protect CsPbI2 Br from moisture.In this paper,CuI,a non-hygroscopic p-type hole-transporting material,is found to induce the phase degradation ofα-CsPbI2 Br to theδ-CsPbI2 Br.The rate and extent of phase degradation of CsPbI2 Br are closely associated with the heating temperature and coverage of a Cu I granular capping layer.This discovery is different from the widely reported water-induced phase degradation of CsPbI2 Br.Our work highlights the importance of careful selection of hole-transporting materials during the processing of I-rich all-inorganic CsPbX3(X=Br,I)perovskites to realize high-performance optoelectronic devices.
基金the financial support from the National Natural Science Foundation of China (21501004,21771003,21901007 and 21671005)Anhui Provincial Natural Science Foundation for Distinguished Youth (1808085J27)。
文摘Self-assembled Fe_(3)O_(4)hierarchical microspheres(HMSs) were prepared by a one-pot synchronous reduction–self-assembling (SRSA) hydrothermal method.In this simple and inexpensive synthetic process,only glycerol,water,and a single iron source (potassium ferricyanide (K3[Fe(CN)6]))were employed as reactants without additional reductants,surfactants,or additives.The iron source,K3[Fe(CN)6],and glycerol significantly affected the synthesis of Fe_(3)O_(4)HMSs.Fe_(3)O_(4)HMSs with a self-assembled spherical shape readily functioned as high-performance anode materials for lithiumion batteries with a specific capacity of>1000 mA h g^(-1)at0.5 A g^(-1)after 270 cycles.Further charging and discharging results revealed that Fe_(3)O_(4)HMSs displayed good reversible performance (>1000 mA h g^(-1)) and cycling stability (700 cycles) at 0.5 A g^(-1).Furthermore,as multifunctional materials,the as-obtained Fe_(3)O_(4)HMSs also exhibited high saturation magnetization (99.5 emu g^(-1)) at room temperature (25°C) and could be further employed as efficient and magnetically recyclable catalysts for the hydrogenation of nitro compounds.
基金the National Natural Science Foundation of China(51832005)。
文摘Metal-organic frameworks(MOFs)and mechanoluminescent(ML)materials have been considered as two types of promising materials that have their own application fields.It would be amazing to endow one material with the advantages of ML and MOFs,thus broadening their applications.However,there are quite few investigations on this topic,and the ML mechanism in ML-MOFs remains unclear.In this study,we proposed a strategy for developing ML-MOFs by doping lanthanide ions into the non-centrosymmetric SBD([Sr(μ-BDC)(DMF)]∞)MOF,and successfully synthesized a series of lanthanide-doped MOFs Ln-SBD(Ln=Tb,Dy,Sm,Eu)and Tb1-xEux-SBD(x=0.2,0.4,0.6,0.8)with multicolor ML.The lanthanide ions were uniformly distributed in the matrix of the SBD-MOF,and occupied the Sr site.The MLMOFs exhibited intense multicolor ML emissions varying from green to yellow to red by changing the co-doping ratios and species of lanthanide ions.The similar ML and photoluminescence(PL)spectra indicated that the ML emission was assigned to the radiative transition from the excited states to the ground states of lanthanide ions.The radiative transition was induced by the electron bombardment process that originated from the piezoelectric effect of the non-centrosymmetric SBD host.In addition,a pioneering temperature sensing research based on ML was carried out,which is promising for realizing dual-functional detection of stress and temperature without excitation light sources.This study gives a unique insight for developing more versatile and interesting smart materials by combining the versatility of MOF with the ML emission,imparting additional values to both MOF and ML materials.Moreover,this study provides a general rule for selecting MOFs with an acentric structure as the host for ML materials.
基金supported by the National Natural Science Foundation of China(Grant No.51302143)Shenzhen Special Fund for the Development of Emerging Industries(Grant No.JCYJ20140417115840233)Shenzhen Peacock Plan(Grant No.KQCX20140521161756228)
文摘Energy harvesting is an appealing technology that makes use of the ambient energy which is otherwise wasted. Piezoelectric materials directly convert the elastic energy to the electric energy, and thus have a great advantage in scavenging vibrational energy for simplicity in device structure with relatively high power density. This paper provides an overview on the research of piezoelectric materials in energy harvesting in recent decades, from basics of piezoelectricity and working principle of energy harvesting with piezoelectric materials, to the progress of development of high-performance piezoelectrics including ceramics, single crystals and polymers, then to experimental attempts on the device fabrication and optimization, finally to perspective applications of piezoelectric energy harvesting(PEH). The criteria for selection of materials for PEH applications are introduced. Not only the figure of merit but also maximum allowable stress of materials are taken into account in the evaluation of their potential in achieving high energy density and output power density. The influence of the device configuration on the performance is also acknowledged and discussed. The magnitude and distribution of induced stress in the piezoelectric unit upon excitation by the vibration source play an important role in determining the output power density and can be tuned via proper design of device configuration without changing its resonant frequency. Approaches to address the issue of frequency match accompanying with the resonant mode are illustrated with literature examples. Usage of PEH devices can be extended to a variety of vibration sources in everyday life as well as in nature. Some appealing applications of PEH, such as in implantable and wearable devices, are reviewed.
基金supported by the National Natural Science Foundation of China(Grant Nos.51173212&21273290)the National Basic Research Program of China("973"Project)(Grant No.2015CB932304)+4 种基金the Natural Science Foundations of Guangdong Province(Grant Nos.S2013020012833&S2013030013474)Fundamental Research Fund for the Central Universities(Grant No.13lgpy51)SRF for ROCS,SEM(Grant No.[2012]1707)the Project of High Level Talents in Higher School of Guangdong Province,and Open-End Fund of Key Laboratory of Functional Inorganic Material Chemistry(Heilongjiang University)Ministry of Education,and the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120171110043)
文摘With increasing demands for clean and sustainable energy, the advantages of high power density, high efficiency, and long life expectancy have made supercapacitors one of the major emerging devices for electrochemical energy storage and power supply. However, one of the key challenges for SCs is their limited energy density, which has hindered their wider application in the field of energy storage. Despite significant progress has been achieved in the fabrication of high-energy density positive electrodes materials, negative electrode materials with high capacitance and a wide potential window are relatively less explored. In this review, we introduced some new negative electrode materials except for common carbon-based materials and what's more, based on our team's work recently, we put forward some new strategies to solve their inherent shortcoming as electrode material for SCs.
基金This work was supported by the National Major Research Program of China (No. 2013CB932602), the Major Project of International Cooperation and Exchanges (No. 2012DFA50990), National Natural Science Foundation of China (NSFC) (Nos. 51232001, 51172022, 51372020, and 51002008), the Fundamental Research Funds for Central Universities, Program for New Century Excellent Talents in Universities, and the Program for Changjiang Scholars and Innovative Research Teams in Universities.
文摘ZnO nanomaterials have been shown to have novel applications in optoelectronics, energy harvesting and piezotronics, due to their coupled semiconducting and piezoelectric properties. Here a functional nanogenerator (FNG) based on ZnO nanowire arrays has been fabricated, which can be employed to detect vibration in both self-powered (SP) and external-powered (EP) modes. In SP mode, the vibration responses of the FNG can be measured through converting mechanical energy directly into an electrical signal. The FNG shows consistent alternating current responses (relative error 〈 0.37%) at regular frequencies from 1 to 15 Hz. In EP mode, the current responses of FNG are significantly enhanced via the piezotronic effect. Under a forward bias of 3 V, the sensor presented a sensitivity of 3700% and an accurate measurement (relative error 〈 0.91%) of vibration frequencies in the range 0.05-15 Hz. The results show that this type of functional nanogenerator sensor can detect vibration in both SP and EP modes according to the demands of the applications.
基金the National Key Research and Development Program of China(2020YFA0715000).
文摘The non-radiative recombination loss caused by diverse defects within SnO_(2)electron transport layer(ETL),perovskite film,and their interface greatly hinders the further improvement of the performance and stability of flexible perovskite solar cells(PSCs).Therefore,it is urgent to develop an effective strategy to address these issues.Herein,a multifunctional material,phospho-ethanolamine(PE),is introduced into SnO_(2)aqueous colloids to suppress defects and prepare high-quality ETL.The results demonstrate that the incorporation of PE can significantly reduce the number of Sn dangling bonds due to the formation of new Sn–O–P bonds,which is beneficial to ameliorating the electrical properties of SnO_(2)and obtaining dense SnO_(2)film.Meanwhile,the amino group(NH_(2))of PE can interact with uncoordinated Pb^(2+)in perovskite,thereby suppressing SnO_(2)/perovskite interface defects and obtaining improved perovskite film quality.Consequently,the optimized flexible and rigid PSCs based on the SnO_(2)-PE composite ETL yield outstanding photoelectric conversion efficiency(PCE)of 18.48%and 21.61%,respectively.Moreover,flexible PSCs based on SnO_(2)-PE present excellent mechanical durability,and 90.6%of the original PCE is retained after 1000 bending cycles.
文摘Faceted crystals with exposed highly reactive planes have attracted intensive investigations for applications. Herein, we demonstrate a general synthetic method to prepare mesocrystal Co3O4 with predominantly exposed {111} reactive facets by the in situ thermal decomposition from Co(OH)2 nanoplatelets. The mesocrystal feature was identified by field emission scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and N2 isotherm analyses. When applied as anode material in lithium-ion batteries, mesocrystal Co3O4 nanoplatelets delivered a high specific capacity and an outstanding high rate performance. The superior electrochemical performance should be ascribed to the predominantly exposed {111} active facets and highly accessible surfaces. This synthetic strategy could be extended to prepare other mesocrystal functional nanomaterials.